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Representing and sharing knowledge using SNOMED 
 
These are the proceedings of KR-MED 2008, the Third International Conference on Formal Biomedi-
cal Knowledge Representation, held in Phoenix, Arizona on May 31st – June 2nd, 2008. The conference 
is co-organized by the Working Group on Formal (Bio-)Medical Knowledge Representation of the 
American Medical Informatics Association (AMIA) and the International Health Terminology Stan-
dards Development Organisation (IHTSDO), and collocated with the 2008 AMIA Spring Congress. 
 
This 3rd edition of KR-MED was inspired by the vision of a universal clinical terminology, covering a 
broad range of health-related domains and meeting the needs of all health professionals. In the last two 
decades numerous health informatics research activities have been performed to turn this vision into 
reality. This conference highlights the progress made in research as well as application, challenges the 
current state, and reflects on future work from a perspective of knowledge representation and formal 
ontologies. 
 
KR-MED 2008 focuses on the Systematized Nomenclature of Medicine – Clinical Terms: SNOMED 
CT®. SNOMED CT is emerging as a comprehensive, multilingual clinical healthcare terminology, 
which is under a new international ownership since 2007. 
Focusing on SNOMED CT, KR-MED 2008 follows up on the successful first Semantic Mining 
Conference on SNOMED (SMCS) organized in Copenhagen in October 2006. 
 
KR-MED 2008 will bring 2 tutorials, 3 invited speakers, a panel on the state of affairs in member coun-
tries, poster presentations and product presentations by some of the sponsors. The scientific sessions 
address the full spectrum from theory to practice. Theoretical issues include representation, formaliza-
tion, classification, and the integration of SNOMED CT with information models. Sessions geared to-
ward application cover mapping, subsetting, interface terminologies, and applications for the use of 
SNOMED CT. 
 
We like to point out that the one-page abstracts in the paper section represent papers that are currently 
under review for journal submission. Depending on the outcome of the review process, either a refer-
ence to the full publication will be added, or the full paper will be included later. 
 
We are confident that these proceedings represent the aim of the conference: sharing knowledge about 
using SNOMED CT. 
 
Wishing you all an informative and enjoyable conference, 
 
 
 
 
Ronald Cornet, Academic Medical Center, Amsterdam, The Netherlands 
Kent Spackman, International Health Terminology Standards Development Organisation 
Chairs of the KR-MED 2008 Scientific Program Committee
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Debugging Snomed ct
Using Axiom Pinpointing in the Description Logic EL+

Franz Baader and Boontawee Suntisrivaraporn
Institute for Theoretical Computer Science, TU Dresden, Germany

Abstract
Snomed ct is a large-scale medical ontology,
which is developed using a variant of the inexpres-
sive Description Logic EL. Description Logic rea-
soning can not only be used to compute subsump-
tion relationships between Snomed concepts, but
also to pinpoint the reason why a certain subsump-
tion relationship holds by computing the axioms
responsible for this relationship. This helps devel-
opers and users of Snomed ct to understand why
a given subsumption relationship follows from the
ontology, which can be seen as a first step toward
removing unwanted subsumption relationships.
In this paper, we describe a new method for axiom
pinpointing in the Description Logic EL+, which is
based on the computation of so-called reachability-
based modules. Our experiments on Snomed ct
show that the sets of axioms explaining subsump-
tion are usually quite small, and that our method
is fast enough to compute such sets on demand.

Introduction

Description Logics (DLs) [1] are a family of logic-
based knowledge representation formalisms, which
can be used to develop ontologies in a formally
well-founded way. This is true both for expres-
sive DLs, which are the logical basis of the Web
Ontology Language OWL [2], and for inexpres-
sive DLs of the EL family [3], which are used in
the design of large-scale medical ontologies such as
Snomed ct1 and the National Cancer Institute’s
ontology.2

One of the main advantages of employing a logic-
based ontology language is that reasoning services
can be used to derive implicit knowledge from the
one explicitly represented. DL systems can, for ex-
ample, classify a given ontology, i.e., compute all

1http://www.ihtsdo.org/our-standards/
2http://www.nci.nih.gov/cancerinfo/terminologyresources

the subsumption (subconcept–superconcept) rela-
tionships between the concepts defined in the on-
tology. The advantage of using an inexpressive DL
of the EL family is that classification is tractable,
i.e., EL reasoners such as CEL [4] can compute
the subsumption hierarchy of a given ontology in
polynomial time.

Similar to writing large programs, building large-
scale ontologies is an error-prone endeavor. Clas-
sification can help to alert the developer or user
of an ontology to the existence of errors. For
example, the subsumption relationship between
“amputation of finger” and “amputation of up-
per limb” in Snomed ct is clearly unintended
[6, 7], and thus reveals a modeling error. How-
ever, given an unintended subsumption relation-
ship in a large ontology like Snomed ct with al-
most four hundred thousand axioms, it is not al-
ways easy to find the erroneous axioms responsible
for it by hand. To overcome this problem, the DL
community has recently invested quite some work
on automating this process. Given a subsump-
tion relationship or another questionable conse-
quence, axiom pinpointing computes a minimal
subset (all minimal subsets) of the ontology that
have this consequence (called MinAs in the fol-
lowing). Most of the work on axiom pinpointing
in DLs was concerned with rather expressive DLs
(see, e.g., [8, 9, 10]). The only work that concen-
trated on pinpointing in the EL family of DLs was
[11]. In addition to providing complexity results
for pinpointing, [11] introduces a “pragmatic” al-
gorithm for computing one MinA, which is based
on a modified version of the classification algo-
rithm used by the CEL reasoner [4]. Though this
approach worked quite well for mid-size ontologies
(see the experiments on a variant of the Galen
medical ontology described in [11]), it was not ef-
ficient enough to deal with large-scale ontologies
like Snomed ct.
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In the present paper, we describe a new method
for axiom pinpointing in the Description Logic
EL+, which is based on the computation of so-
called reachability-based modules [5]. Our experi-
ments on Snomed ct show that the sets of axioms
explaining a given subsumption are usually quite
small (78% of the MinAs we computed were of size
ten or less), and that our method is fast enough
(on average, it took one second to obtain a MinA)
to compute these sets on demand, i.e., whenever
the user asks for a MinA for a suspect subsump-
tion relationship.

Axiom pinpointing in EL+

In this section, we first introduce the DL EL+,
which is an extension of the DL EL used to define
Snomed ct. Then, we define minimal axiom sets
(MinAs) for subsumption, and recall some of the
known results about computing MinAs in EL+.

Syntax Semantics

� ΔI

C � D CI ∩ DI

∃r.C {x ∈ ΔI | ∃y ∈ ΔI :
(x, y) ∈ rI ∧ y ∈ CI}

C � D CI ⊆ DI

r1 ◦ · · · ◦ rn � s rI1 ◦ · · · ◦ rIn ⊆ sI

Table 1: Syntax and semantics of EL+.

Starting with a set of concept names CN and a
set of role names RN, EL+ concept descriptions
can be built using the constructors shown in the
upper part of Table 1, i.e., every concept name
A ∈ CN and the top concept � are EL+ con-
cept descriptions, and if C,D are EL+ concept
descriptions and r ∈ RN is a role name, then
C �D (conjunction) and ∃r.C (existential restric-
tion) are EL+ concept descriptions. Role chains
of the form r1 ◦ · · · ◦ rn for n ≥ 0 are called role
descriptions. An EL+ ontology is a finite set of
axioms of the form shown in the lower part of Ta-
ble 1, where axioms of the form C � D are called
general concept inclusions (GCIs) and of the form
r1 ◦ · · · ◦ rn � s role inclusions (RIs). An EL on-
tology is an EL+ ontology that does not contain
RIs. We use C ≡ D as an abbreviation for the two
GCIs C � D,D � C.
The semantics of EL+ is defined in terms of inter-
pretations I = (ΔI , ·I), where the domain ΔI is a
non-empty set of individuals, and the interpreta-
tion function ·I maps each concept name A ∈ CN

α1 AmpOfFinger ≡ Amp � ∃site.FingerS

α2 AmpOfHand ≡ Amp � ∃site.HandS

α3 InjToFinger ≡ Inj � ∃site.FingerS

α4 InjToHand ≡ Inj � ∃site.HandS

α5 FingerE � FingerS

α6 FingerP � FingerS � ∃part.FingerE

α7 HandE � HandS

α8 HandP � HandS � ∃part.HandE

α9 ULimbE � ULimbS

α10 ULimbP � ULimbS � ∃part.ULimbE

α11 FingerS � HandP

α12 HandS � ULimbP

Figure 1: Ontology OAmp illustrating a faulty
SEP-triplet encoding in Snomed ct.

to a subset AI of ΔI and each role name r ∈ RN
to a binary relation rI on ΔI . The extension of ·I
to arbitrary concept descriptions is inductively de-
fined, as shown in the semantics column of Table 1.
An interpretation I is a model of an ontology O if,
for each inclusion axiom in O, the conditions given
in the semantics column of Table 1 are satisfied.
The main reasoning problem in EL+ is the sub-
sumption problem: given an EL+ ontology O and
two EL+ concept descriptions C,D, check whether
C is subsumed by D w.r.t. O (written C �O D),
i.e., whether CI ⊆ DI holds in all models of O.
The computation of all subsumption relationships
between the concept names occurring in O is called
classification of O.
Figure 1 shows a small EL ontology defining con-
cepts related to amputation/injury of hand and
finger. It uses the so-called SEP-triplet encoding
[12], in which anatomical concepts (like hand) are
represented by three concepts: the structure con-
cept (e.g, HandS , which stands for the hand and
its proper parts), the part concept (e.g, HandP ,
which stands for the proper parts of the hand),
and the entity concept (e.g, HandE , which stands
for the entire hand). The axioms α5–α10 consti-
tute a completed SEP-triplet encoding for finger,
hand, and upper limb. For example, axiom α8 says
that proper parts of the hand belong to the struc-
ture concept HandS , and they are parts of hand
(i.e., linked with the role part to the entity con-
cept HandE). Given this encoding, the fact that
the finger is part of the hand can be expressed us-
ing axiom α11. The main reason for using this
encoding in Snomed ct is that it can simulate
transitivity reasoning for the role part, although
transitivity of part cannot be expressed in EL. For
example, it is easy to see that the ontology OAmp
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implies that the finger is part of the upper limb,
i.e., FingerE �OAmp

∃part.ULimbE . As a side-effect,
the SEP-triplet encoding can also be used to simu-
late so-called right-identity rules [13], which allow
to inherit properties along the part role. Consider
the following subsumption relationships that hold
in our example ontology:

AmpOfFinger �OAmp
AmpOfHand, (1)

InjToFinger �OAmp
InjToHand. (2)

While subsumption (2) actually makes sense (it
is sensible to say that an injury to the finger is
an injury to the hand), subsumption (1) is clearly
undesirable. Subsumption (1) is an example of a
false positive subsumption, which does indeed oc-
cur in Snomed ct. It has been argued [6, 7] that
this subsumption is due to a faulty SEP-triplet en-
coding. In fact, using the entity concepts instead
of the structure concepts in the axioms α1 and α2

would have avoided this problem.
In EL+, one could actually dispense with the SEP-
triplet encoding altogether since both transitiv-
ity and right-identity rules can be expressed using
RIs. For example, part◦part � part expresses tran-
sitivity of the role part. An alternative and direct
representation of anatomical concepts, as well as
referring concepts like clinical findings and proce-
dures, based on this additional expressive power of
the DL EL+ is proposed in [6]. The new modeling
is succinct and also avoids the above false positive
subsumption (1).
For a small ontology like OAmp, it is not hard to
do the subsumption reasoning manually, and thus
also to find the axioms responsible for a given sub-
sumption relationship by hand. For a very large
ontology like Snomed ct, this manual approach
to pinpointing the responsible axioms is very time-
consuming, and thus should be automated. First,
we give a formal definition of what automated pin-
pointing is actually supposed to compute.
Definition 1 (MinA). Let O be an EL+ ontol-
ogy, and A,B concept names such that A �O B.
The set S ⊆ O is a minimal axiom set (MinA) for
A �O B if, and only if, A �S B and, for every
S ′ ⊂ S, A ��S′ B. �

In our example, {α1, α2, α8, α11} is the only MinA
for subsumption (1), whereas {α3, α4, α8, α11} is
the only MinA for subsumption (2). As shown
in [11], a given subsumption relationship w.r.t. an
EL+ ontology may have exponentially many Mi-
nAs, and even deciding whether there is a MinA
of cardinality ≤ k is an NP-complete problem. In
contrast, one MinA can always be extracted in

Algorithm 1 Naive linear extraction of a MinA.
function lin-extract-mina(A, B,O)

1: S := O
2: for each axiom α ∈ O do
3: if A �S\{α} B then
4: S := S \ {α}
5: return S

Algorithm 2 Logarithmic extraction of a MinA.
function log-extract-mina(A, B,O)

1: return log-extract-mina-r(A, B, ∅,O)

function log-extract-mina-r(A, B, S,O)

1: if |O| = 1 then
2: return O
3: S1, S2 := halve(O)
4: if A �S∪S1 B then
5: return log-extract-mina-r(A, B, S, S1)
6: if A �S∪S2 B then
7: return log-extract-mina-r(A, B, S, S2)
8: S′

1 := log-extract-mina-r(A, B, S ∪ S2, S1)
9: S′

2 := log-extract-mina-r(A, B, S ∪ S′
1, S2)

10: return S′
1 ∪ S′

1

polynomial time. In [11], this was shown using the
simple Algorithm 1, which requires linearly many
(polynomial) subsumption tests. For a large on-
tology, however, this naive approach is not feasi-
ble. For example, for Snomed ct it would require
almost half a million subsumption tests for each
MinA extraction.

We can do much better by adopting the algorithm
for computing prime implicates described in [14]
to our problem. Basically, this algorithm applies
binary search to find a MinA. Instead of taking
out one axiom at a time, it partitions the ontol-
ogy into two halves, and checks whether one of
them entails the subsumption. If yes, it imme-
diately recurses on that half, throwing away half
of the axioms in one step. Otherwise, essential
axioms are in both halves. In this case, the algo-
rithm recurses on each half, using the other half as
the “support set”. Algorithm 2 describes this ap-
proach in more detail, where the function halve(O)
partitions O into S1 ∪ S2 with ||S1| − |S2|| ≤ 1. It
follows from the results in [14] that computing a
MinA S for a given subsumption A �O B with Al-
gorithm 2 requires O ((|S| − 1) + |S|log(|O|/|S|))
subsumption tests. This greatly improves on the
naive algorithm. For instance, computing a MinA
consisting of nine axioms for Snomed ct requires
about one hundred subsumption tests. Though
this is much better than the almost half a million
required by the naive algorithm, it is still not good
enough to compute MinAs on demand (see below).
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Modularization-based axiom
pinpointing in EL+

Instead of applying Algorithm 1 or 2 directly to
the whole ontology O, one can first try to find a
non-minimal (but hopefully small) subset S ⊆ O
with A �S B (called nMinA in the following),
and then apply Algorithm 1 or 2 to this subset to
obtain a MinA. In [11], we have sketched a modi-
fied version of the classification algorithm for EL+

[3, 4] that extracts such nMinAs. In the exper-
iments on a version of Galen described in [11],
Algorithm 1 was then used to minimize these sets.
Whereas the nMinA extraction was fast and pro-
duced quite small sets for Galen, it crashed after
a few hours because of space problems when ap-
plied to Snomed ct.
To overcome this problem, we propose an algo-
rithm for extracting nMinAs that is based on
modularization. In the following, we introduce
only those notions regarding modularization that
are strictly necessary in the context of this pa-
per. More details regarding the reachability-based
modularization approach from which these notions
are derived, as well as its connection to other work
on modularization, can be found in [5].
Let O be an EL+ ontology, and A a concept name
occurring in O. We say that S ⊆ O is a sub-
sumption module for A in O whenever A �O B if,
and only if, A �S B holds for all concept names
B occurring in O. Obviously, if S is a subsump-
tion module for A in O and A �O B, then S is
an nMinA for this subsumption, and Algorithm 1
or 2 can be used to compute a MinA S ′ ⊆ S from
S. Thus, we know that a subsumption module
for A contains a MinA for every valid subsump-
tion relationship A �O B. The reachability-based
modules introduced below satisfy an even stronger
property: they contain all MinAs for all valid sub-
sumptions.

Definition 2. Let O be an EL+ ontology and A
a concept name occurring in O. The subsumption
module S for A in O is called strong if the fol-
lowing holds for all concept names B occurring in
O: if A �O B, then every MinA for A �O B is a
subset of S. �

Obviously, O itself is a strong subsumption mod-
ule for every concept name A occurring in O.
The following definition (first introduced in [5])
yields strong subsumption modules that are usu-
ally much smaller than the whole ontology. For
an EL+ entity X—i.e., either a (concept or role)
description, a (concept or role) inclusion axiom, or
an ontology—we write Sig(X) to denote the set of

concept and role names occurring in the entity X.
Definition 3 (Reachability-based modules).
Let O be an EL+ ontology and A a concept name
occurring in O. The set of A-reachable names in
O is the smallest set N of concept and role names
such that

• A belongs to N;

• for all (concept/role) inclusion axioms αL � αR

in O, if Sig(αL) ⊆ N then Sig(αR) ⊆ N.

We call an axiom αL � αR A-reachable in O if
every element of Sig(αL) is A-reachable in O. The
reachability-based module for A in O, denoted by
Oreach

A , consists of all A-reachable axioms from O.
�

In [5], it has been shown that Oreach
A is indeed a

subsumption module for A in O. Here, we show
the following stronger results.
Theorem 4. Let O be an EL+ ontology and A a
concept name. Then Oreach

A is a strong subsump-
tion module for A in O.
Proof. The fact that Oreach

A is a subsumption
module was already shown in [5]. To show that
it is strong, assume that A �O B holds, but there
is a MinA S for A �O B that is not contained in
Oreach

A . Thus, there is an axiom α ∈ S \ Oreach
A .

Let S1 be the subset of S that contains the A-
reachable axioms. Note that S1 is a strict subset
of S since α �∈ S1. We claim that A �S B implies
A �S1 B, which contradicts the assumption that
S is a MinA for A �O B.
To show the claim, we assume to the contrary that
A ��S1 B, i.e., there is a model I1 of S1 such that
AI1 �⊆ BI1 . We modify I1 to I by setting yI := ∅
for all (concept or role) names that are not A-
reachable. It is easy to see that AI �⊆ BI . In fact,
we have AI = AI1 (since A is A-reachable), and
BI = BI1 or BI = ∅.
It remains to show that I is indeed a model of
S, i.e. satisfies all axioms βL � βR in S. If
βL contains a name that is not A-reachable, then
(βL)I = ∅, and the axiom is trivially satisfied.
Otherwise, this axiom belongs to S1, and the def-
inition of A-reachability implies that all names in
βR are A-reachable as well. Consequently, I1 and
I coincide on the names occurring in βL � βR.
Since I1 is a model of S1, we thus have (βL)I =
(βL)I1 ⊆ (βR)I1 = (βR)I . ❏

As an immediate consequence of this theorem, in-
stead of extracting a MinA for A �O B from O, it
is sufficient to extract a MinA for A �Oreach

A
B from

Oreach
A . This is what the function extract-mina in
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Algorithm 3 Modularization-based extraction of
a MinA
function extract-mina(A, B,O)

1: Oreach
A ← extract-module(O, A)

2: return log-extract-mina(A, B,Oreach
A )

function second-mina?(A, B,Oreach
A ,S1)

1: for each axiom α ∈ S1 do
2: O′ ← Oreach

A \{α}
3: if A �O′ B then
4: return “second MinA exists”
5: return “MinA unique”

function extract-module(O, A)

1: OA ← ∅
2: queue ← active-axioms({A})
3: while not empty(queue) do
4: (αL � αR) ← fetch(queue)
5: if Sig(αL) ⊆ {A} ∪ Sig(OA) then
6: OA ← OA ∪ {αL � αR}
7: queue ← queue ∪

(active-axioms(Sig(αR)) \ OA)
8: return OA

Algorithm 3 does. Note that, instead of the log-
arithmic extraction algorithm (Algorithm 2), we
could also use the linear extraction algorithm (Al-
gorithm 1). Since reachability-based modules are
usually quite small, it is not a priori clear whether
using the more complicated logarithmic algorithm
really pays off (see the results of our experiments
below). The function second-mina? in Algorithm 3
takes the extracted module and the first MinA as
input, and checks if the subsumption in question
still holds in the absence of one of the axioms in
the MinA. In this case, this subsumption obviously
must have more than one MinA. Note that, for this
function to be correct, we really need to know that
Oreach

A is a strong subsumption module.
The function extract-module in Algorithm 3 re-
alizes one way of computing reachability-based
modules. The function call active-axioms used
there yields, for a given set of names, all ax-
ioms that contain at least one of these names in
their left-hand side. It is not hard to show that
the call extract-module(O, A) indeed computes the
reachability-based module for A in O (see [5] for
more details). The experiments described in [5]
show that extraction of reachability-based mod-
ules in Snomed ct is usually quite fast, and the
modules obtained this way are quite small. In the
next section, we show that these positive results
extend to the modularization-based extraction of
MinAs.

Experimental Results

We have implemented the three algorithms de-
scribed in this paper, using CEL [4] to com-

pute subsumption. Our experiments use the
January/2005 release of the DL version of
Snomed ct, which contains 379,691 concept
names, 62 role names, and 379,704 axioms.3 In
the following, we call this ontology OSnomed. The
experiments were carried out on a PC with 2.40
GHz Pentium-4 processor and 1 GB of memory.
As stand-alone algorithms for computing a MinA,
we applied Algorithm 1 and 2 only to the
false positive subsumption AmpOfFinger �OSnomed

AmpOfHand. Algorithm 1 did not terminate on
this input after 24 hours, whereas Algorithm 2 re-
quired 26:05 minutes (1,565 seconds) to compute a
MinA of cardinality 6. (Note that the actual mod-
elling of “amputation of finger” and “amputation
of hand” in Snomed ct differs from the one given
in Fig. 1 due to the use of role groups and of two
different roles to express location in Snomed ct.
Thus, the computed MinA also differs from the
one given above. However, it also shows that the
reason for the unintended subsumption is the in-
correct use of the SEP-triplet encoding.)
Algorithm 3 performs much better for the am-
putation example. The reachability-based mod-
ule OSnomed

AmpOfFinger contains 57 axioms, and was
computed in 0.04 seconds. Extracting a MinA
for AmpOfFinger �OSnomed

AmpOfFinger
AmpOfHand from

OSnomed
AmpOfFinger using the logarithmic minimization al-

gorithm then took only half a second. An appli-
cation of second-mina? then showed that the ex-
tracted MinA is the only one for this subsumption.
We have also applied Algorithm 3 to a large num-
ber of subsumption relationships that follow from
OSnomed. Since there are more than five million
such subsumptions, testing the algorithm on all
of them was not feasible: assuming an average
extraction time of 1 second, this would have re-
quired 58 days. For this reason, we sampled 0.5%
of all concepts in each top-level category C in
Snomed ct. Let us denote the set of samples for
category C by c-samples(C). For each sampled
concept A, all positive subsumptions A �OSnomed B
with A as subsumee were considered.
The first column of Table 2 shows the top-level
categories and the second the number of sampled
subsumption relationships with the subsumee in
this category. The next four columns give the
time needed to compute and the size of the cor-
responding modules and MinAs. The values in
square brackets give the time required by the

3The DL version is also known in the SNOMED
lingo as the ‘stated form,’ while axioms here boil down
to (primitive) concept definitions.
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Figure 2: Module and MinA size distribution.

modularization-based pinpointing algorithm, but
with the naive linear minimization algorithm in-
stead of the logarithmic one. In all four columns,
we give both average and maximum values. The
last column shows the percentage of subsump-
tions that have only one MinA. Interestingly, more
than two thirds of all subsumptions have only
one MinA. The overall empirical results for the
27,477 sampled subsumptions (about 0.5% of all
subsumptions) are given in the last row of the ta-
ble. These results show that, on average, a MinA
can be computed within one second, and its size is
smaller than 10. Thus, MinAs can indeed be com-
puted on demand, and their size is small enough
such that they can then be inspected by hand.
Surprisingly, the linear minimization algorithm
performed better in our experiments than the log-
arithmic one. An explanation for this is probably
that, unlike the experiments of Algorithm 1 and 2
on the whole ontology, the modules are already
quite small, and thus the overhead required by the
logarithmic algorithm does not pay off. Figure 2
depicts the size distribution of our sampled mod-
ules and MinAs. As easily visible from the chart,
the modules are quite small, but the MinAs are
even smaller. In fact, the majority of all subsump-
tions (78%) have a MinA of size ten or less.

Conclusions

We have introduced a new method for axiom pin-
pointing in the DL EL+ that is based on the com-
putation of reachability-based modules. The ex-
periments carried out on Snomed ct show that
this method is fast enough to extract a minimal
axiom set (MinA) for a given subsumption on de-
mand. In addition, the extracted MinAs are usu-
ally quite small and can therefore be inspected by
users and designers of Snomed ct by hand. In the
future, we will extend the approach such that it
can (i) extract all MinAs, (ii) provide natural lan-
guage explanations for subsumption, and (iii) give
suggestions for how to revise the ontology to get
rid of an unwanted subsumption.

Acknowledgements
The first author was partially supported by NICTA,
Canberra Research Lab, and the second by the Ger-
man Research Foundation (DFG) under grant BA
1122/11-1.

Address for Correspondence
Franz Baader and Boontawee Suntisrivaraporn
TU Dresden, Theoretical Computer Science,

01062 Dresden, Germany
{baader,meng}@tcs.inf.tu-dresden.de

References
[1] F. Baader, D. Calvanese, D. McGuinness, D.

Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University
Press, 2003.

[2] I. Horrocks, P. F. P.-Schneider, and F. van
Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of
Web Semantics, 1(1):7–26, 2003.

[3] F. Baader, S. Brandt, and C. Lutz. Pushing the
EL envelope. In Proc. IJCAI 2005.

[4] F. Baader, C. Lutz, and B. Suntisrivaraporn.
CEL—a polynomial-time reasoner for life science
ontologies. In Proc. IJCAR 2006, Springer LNAI
4130, 2006.

[5] B. Suntisrivaraporn. Module extraction and in-
cremental classification: A pragmatic approach
for EL+ ontologies. In Proc. ESWC 2008,
Springer LNCS, 2008. To appear.

[6] B. Suntisrivaraporn, F. Baader, S. Schulz, and K.
Spackman. Replacing SEP-triplets in SNOMED
CT using tractable description logic operators. In
Proc. AIME 2007, Springer LNCS 4594, 2007.

[7] U. Hahn S. Schulz, K. Mark. Spatial location
and its relevance for terminological inferences in
bio-ontologies. BMC Bioinformatics, 2007.

[8] S. Schlobach and R. Cornet. Non-standard rea-
soning services for the debugging of description
logic terminologies. In Proc. IJCAI 2003.

[9] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging
OWL ontologies. In Proc. WWW 2005.

[10] T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Find-
ing maximally satisfiable terminologies for the
description logic ALC. In Proc. (AAAI 2006).
AAAI Press/The MIT Press, 2006.
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Abstract
By constructing local extensions to SNOMED we
aim to enrich existing medical and related data
stores, simplify the expression of complex queries,
and establish a foundation for semantic integra-
tion of data from multiple sources.
Specifically, a local extension can be constructed
from the controlled vocabulary(ies) used in the
medical data. In combination with SNOMED,
this local extension makes explicit the implicit se-
mantics of the terms in the controlled vocabulary.
By using SNOMED as a base ontology we can
exploit the existing knowledge encoded in it and
simplify the task of reifying the implicit seman-
tics of the controlled vocabulary. Queries can now
be formulated using the relationships encoded in
the extended SNOMED rather than embedding
them ad-hoc into the query itself. Additionally,
SNOMED can then act as a common point of in-
tegration, providing a shared set of concepts for
querying across multiple data sets.
Key to practical construction of a local extension
to SNOMED is appropriate tool support including
the ability to compute subsumption relationships
very quickly. Our implementation of the polyno-
mial algorithm for EL+ in Java is able to classify
SNOMED in under 1 minute.

INTRODUCTION

Experience with integrating medical and related
data [1] shows that the use of controlled vocabu-
laries successfully modulates the amount of noise
in the data. However, when querying the col-
lected data, any semantic relationships between
the terms that are relevant to the query (for ex-
ample, specialisation/generalisation or part-of re-
lationships) need to be explicitly encoded in the
query and/or accounted for in the interpretation
of the query results.
These kinds of implicit relationships are especially

common in the health domain where terms often
involve an implicit context of usage (e.g., lobe in
the context of lung cancer) or implicit references to
anatomical structures (e.g., colorectal cancer) or
related classes of diseases, injuries, or procedures.
Accurately and consistently encoding these rela-
tionships in queries relies on the person formulat-
ing the queries to understand them, thus creating
many opportunities for errors, omissions, and in-
consistencies to occur. When multiple people are
constructing queries these risks are further exac-
erbated.
By constructing the vocabularies so as to explicitly
represent the relationships between terms, queries
can directly and consistently exploit the relation-
ships. Using an ad-hoc explicit representation of
these relationships helps, but may introduce new
problems in terms of consistency of usage and how
the relationships are interpreted (see, for example,
the Radiological Electronic Atlas of Malformation
Syndromes and Skeletal Dysplasias (REAMS) [2]).
Instead, using a well-understood formal mecha-
nism for representing the relationships, such as
Description Logic, can avoid these problems.
However we still have two problems to solve:

1. how do we deal with all the existing data sets
that do not do this; and

2. how do we mitigate the, potentially quite high1,
cost of explicitly representing all the relation-
ships?

We can deal with both these problems by ex-
tending (as needed) an existing standard ontol-
ogy, such as the Systematized Nomenclature of
Medicine (SNOMED) [3], that already embodies

1Getting the modelling right, from scratch, requires
not only an excellent understanding of the concepts in-
volved as well as their relationships, but also an under-
standing of how best to represent them in a particular
Description Logic formalism.
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many of the relationships we need. However, one
of the main difficulties with this approach is that
building an extension to SNOMED is not dissim-
ilar to maintaining and developing SNOMED it-
self. That is, the sheer size of SNOMED has
meant that, until recently, very few tools could
compute all of its subsumption relationships, and
even those that could would reportedly take sev-
eral hours.
Fortunately, recent work by Baader et al. [4, 5]
on the tractable family of description logics EL
has shown that polynomial time classification al-
gorithms exist and are practical. Moreover despite
their relatively low expressive power, the EL fam-
ily of description logics is suitable for represent-
ing such real-world ontologies as SNOMED and
offer additional expressiveness suitable for prop-
erly representing partOf relationships and suffi-
cient conditions.2 Their implementation of this
algorithm in Lisp is able to classify SNOMED in
1,782 seconds [5] (approx. 30 minutes) which sug-
gests an optimised implementation in a lower-level
language may be fast enough for near real-time
feedback in an editing tool.
Thus, our goal is to provide tool support for defin-
ing a local extension to an existing standard formal
ontology; a mapping from an existing set of terms
that characterise an informal ontology to concepts
in the formal ontology. In doing so we effectively
realise latent semantics in the existing medical
data via the standard ontology. This should facil-
itate simpler and more robust queries and in turn
aid data integration, a special-case application of
querying where related medical data sets use se-
mantically overlapping, but distinct term sets.

RELATED WORK
There is a great deal of published work on using
ontologies for data integration (see Wache et al. [6]
for an overview), but it is mostly focussed on their
use at the meta-data level; ontologies are used
to describe, reason about and integrate database
schemas. While related to our goals, we are ad-
dressing the more specific problem of semantic
data integration or semantic translation. Stucken-
schmidt et al. [7] discuss an approach to this prob-
lem in the context of their Ontology Interchange
Language (OIL) [8]. In particular they raise the
question of whether it is feasible to find or cre-
ate a sufficient shared terminology. In our domain
of medical data we believe that SNOMED repre-
sents such a shared terminology. A possibly more

2See also http://webont.org/owl/1.1/
tractable.html#2

important problem, and one identified in our work
with skeletal dysplasias [2], is how to cope with er-
rors in the shared terminology.
Wade and Rosenbloom [9] report on the man-
ual construction of what is almost a local exten-
sion to SNOMED (they conceived the task as a
semi-formal mapping). In this work 2002 terms
were mapped to combination of single and post-
coordinated concepts of which about 75% were
equivalencies (20% of these were to single con-
cepts) and only 1% (26) were, in their words, “not
mappable”. It is unclear why these terms were cat-
egorized as such since they include, for example,
presyncope which could reasonably be related to
3006004|disturbance of consciousness|, but it may
be that the context of use of the terms was unavail-
able in order to properly discern their meaning.
However, their work does demonstrate that the
goal of producing a local extension to SNOMED
is feasible.

PROBLEM DESCRIPTION

The problem of embedding domain semantics such
as specialisation/generalisation or part-of relation-
ships into queries is illustrated in the following.
For example, a query to find all performed proce-
dures involving a colectomy might enumerate all
such procedures:

SELECT S.*
FROM Surgery S
WHERE S.procedure = ’32003-00’

OR S.procedure = ’32003-01’
OR S.procedure = ’32012-00’
...

which has the potential to accidently omit certain
codes and will require updating if the terminology
is updated with additional forms of colectomy.
Alternatively, some kind of heuristic query could
be used:

SELECT S.*
FROM Surgery S, ProcedureCodes C
WHERE S.procedure = C.code
AND C.text LIKE ’%colectomy%’;

which has the potential to miss a term that doesn’t
follow the expected naming pattern (e.g., epiploec-
tomy) or provide false matches where a compound
or composite name does not reflect a valid special-
isation.
If, however, the terms were encoded as concepts
in an ontology, the query is simple3:

3We envisage that the complete set of subsumption
relationships would be stored in a database table to
support fast subsumption-based queries using only two
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SELECT S.*
FROM Surgery S, Ontology O
WHERE O.ancestor = 23968004
AND S.procedure = O.descendant;

Note also that SNOMED, unlike classification
schemes such as ICD-9 and ICD-10, support a
multi-parented generalisation hierarchy.

CONSTRUCTING LOCAL
EXTENSIONS

In order to construct an ontology from an exist-
ing terminology (or collection of terminologies) we
take a multi-step approach:

1. Map each term from the controlled vocabulary
to a concept, factoring out any synonyms, to
produce P.

This is often a simple one-to-one mapping, but
it may be necessary to extend the mapping to
include disambiguating data values when the
same term is used to mean different things in
different contexts.

2. Make any simple implicit relationships explicit,
adding them to P.

For example, generalisation, partOf, or hasLoca-
tion relationships. It may be necessary to intro-
duce new concepts to act as the generalisation
of two or more sibling concepts.

3. Specify relationships between these (local) con-
cepts and those in the chosen standard ontology
Q, adding them to P.

To be able to answer queries involving our new
ontology we first need to classify Q∪ P to identify
all the subsumption relationships it entails.
Note that, we should be careful that Q∪ P repre-
sents a conservative extension [10] of Q. That is,
Q∪ P produces the same consequences over the
set of concepts in Q as Q does by itself. We also
need to ensure various integrity constraints (such
as disjointness) are preserved in Q∪ P. Thus we
would like to be able to interactively edit P while
exploiting the consequences of Q∪ P in live feed-
back through the mapping tool. These kinds of
checks can be performed by classification of Q∪ P
but this may not be viable if Q∪ P is large, as is
the case when Q is SNOMED.

Colorectal Cancer Example
In this section we consider a sample set of ICD-10-
AM [11] terms for procedures relating to colorectal

joins.

cancer, shown in Figure 1. We can map these, one-
to-one, to a set of concepts for a local ontology.

Procedure Code
(ICD-10-AM)

Meaning

32000-00 Sig colectomy with stoma
formation

32003-00 Sig colectomy with anasto-
mosis

32003-01 Right hemicolectomy
32005-00 Subtotal colectomy
32005-01 Ext right hemicolectomy
32006-00 Left hemicolectomy
32012-00 Total colectomy
32024-00 High anterior resection
32025-00 Low anterior resection ex-

traperitoneal
32026-00 Low anterior resection

coloanal anastomosis
32028-00 Ultra low anterior resection
32030-00 Hartmann’s procedure
32039-00 Abdomino-perineal excision
32051-00 Total proctocolectomy with

ileo-anal anastomosis

Figure 1: A Term-Set of Colorectal Cancer Proce-
dures

The next step is to make any simple relationship
explicit. In our case there are none that can be ex-
pressed using just the concepts we have currently
identified.

Figure 2 describes the identified relationships be-
tween these terms and selected SNOMED con-
cepts as per step 3. Note that several concepts (for
example, 32028-00|ultra low anterior resection|),
have no exact equivalent in SNOMED, and that
one, 32051|total proctocolectomy with ileo-anal
anastomosis| implies a composite of concepts.

Figure 3 shows a visualisation of the results of
classifying SNOMED augmented with the ontol-
ogy from Figure 2. As can be seen, unifying
generalisation concepts such as 84604002|sigmoid
colectomy| have been identified, and thus provide
a strong foundation for constructing queries that
span the various procedures. Additionally, since
SNOMED includes detailed anatomical concepts,
queries can now be composed in terms of anatom-
ical features even though they did not exist in the
original terminology.
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Procedure Relation SNOMED

32000-00 ≡ 315327002
32003-00 ≡ 315326006
32003-01 ≡ 235326000
32005-00 ≡ 43075005
32005-01 ≡ 174071004
32006-00 ≡ 82619000
32012-00 ≡ 26390003
32024-00 ≡ 400988008
32025-00 � 314592008
32026-00 � 314592008
32028-00 � 314592008
32030-00 ≡ 16564004
32039-00 ≡ 265414003
32051-00 � 174059005 � 70172002

Figure 2: Identified Relationships with SNOMED
Concepts

COMPLEX QUERIES AND
CONTEXT

So far we have only considered simple query
scenarios where a single database column
represents the concept we wish to query
(e.g., Surgery.procedure) and there already ex-
ists a concept that characterises the bound of the
query (e.g., 2396804).
Consider instead a table, as shown in Figure 4,
that stores both scheduled and performed proce-
dures while using another column to distinguish
them, and which encodes laterality, if any, of the
procedure in yet another column. Now imagine
we wish to query for all patients who have had an
amputation including the left hand.

Patient Date Status
. . . . . . . . .

Procedure Laterality
. . . . . .

Figure 4: Table storing records with contextual
information split across columns

Patient Date . . . Laterality Code
. . . . . . . . .

Code Equivalent SNOMED Expression
. . . . . .

Figure 5: Augmented table for representing con-
textualised concepts

To support this kind of problem with reasonable
generality and decent query speed, we need to
generate a new column containing codes that are
mapped to the set of compound concepts that
correspond to the contextualised meaning of each
database row. Hence, as shown in Figure 5, the ta-
ble from Figure 4 would be extended with a Code
foreign-key column, and an additional table con-
taining the SNOMED expressions of the form4:

∃ associatedProcedure.〈P〉 �
∃ laterality.〈L〉 �
∃ procedureContext.〈S〉

which gives us another ontology extension that we
can add to SNOMED.
Finally, in order to be able to pose a subsumption-
based complex query involving composite concepts
and have it evaluated at database join speeds, we
can employ the same strategy: extend the ontol-
ogy with a new fully-defined concept correspond-
ing to our query expression, re-classify, and per-
form a join-based query using the new concept.
The need to construct compound expressions that
explicitly represent the context associated with a
record in a database occurs any time the data
needs to be queried outside its original context.
This may happen in as trivial a case as when one
table in a database is joined with another, but
the more general scenario occurs when integrating
data from multiple data sources.

RESULTS

Classifying SNOMED

The practicality of creating local extensions of
SNOMED is dependent on sufficient tool support
and, as mentioned previously, a cornerstone of this
is fast classification. Indeed we believe that near
real-time feedback in an editing environment, be
it an IDE for programming or a 3D architectural
modelling tool, can have a transformational effect
on the authoring and editing process.
To this end, we have implemented snorocket, using
a slightly altered form of the algorithm in [5] writ-
ten in Java. We use several optimised Map and
Set data-structures tailored for ontologies with
roughly the same number of concepts and roles as
SNOMED. This implementation is able to classify

4Note that considerable experience with SNOMED
and all its documentation may be required to construct
suitable valid post-coordinated expressions like those
above. Tool support for this is clearly an important
issue and recent work in the IHTSDO Concept Model
SIG on producing a Machine Readable Concept Model
will be valuable for this.
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Figure 3: Visualisation of part of an extended SNOMED ontology

SNOMED in 54 seconds on a modern 2.4GHz In-
tel Core 2 Duo running Windows XP and Sun’s
Java 1.6.0 03.
For a fairer comparison with CEL, which only
runs under Linux, we ran both snorocket and
CEL on an older four-CPU Xeon 3.6GHz ma-
chine running RedHat Linux 2.6.9 and Sun’s Java
1.6.0 04. The results, for several of the ontologies
available from http://lat.inf.tu-dresden.de/

~meng/toyont.html, are in Table 1.
Clearly, being able to classify SNOMED in close
to a minute is a substantial improvement over
roughly 23 minutes and brings us much closer to
the near real-time feedback we are seeking.

Incremental Classification
In our mapping scenario we observe that
SNOMED (Q) is unchanging while the local ex-
tension (P) is modified. If we can classify Q once
and record the result C(Q) then, due to the mono-
tonicity of the description logic, the classification
of Q∪ P, C(Q∪ P), is a superset of C(Q). The
goal is then to derive C(Q∪ P) given C(Q) (and,
of course, Q and P) which should be much faster
than deriving C(Q∪ P) from scratch.
Suntisrivaraporn [12] calls this Duo-Ontology
Classification and presents a variation of the al-
gorithm in [5] to do just this. We have indepen-
dently derived our own variant of this algorithm
along similar lines; the queue-processing core is
essentially unchanged but the initialisation of the
queues is different to account for the work that has
already been done.

Currently this work is in a preliminary state and
the correspondence with the variant described
in [12] is unknown. However the performance
of this incremental algorithm is very promising.
With P consisting of the 14 new concepts as de-
fined as in Figure 2, incremental classification
takes around 0.9s using our un-optimised imple-
mentation.

DISCUSSION

Ideally, as a term set is developed, it would be ex-
plicitly constructed as an ontology and, to avoid
re-invention and promote interoperability, could
be developed as an extension of an existing stan-
dard ontology such as SNOMED. These exten-
sion ontologies could then be shared and evolved
within their specialist community while still being
useful and usable in more general communities.
One such example is an ontology for skeletal dys-
plasias extracted from REAMS [13].
It is thus useful to be able to represent these on-
tologies in a standard format such as OWL so
that they can be shared or manipulated using ex-
isting toolsets. Currently we use the OWL 1.1
proposal [14] rather than OWL 1.0 since it sup-
ports the expression of the role axioms (to de-
scribe role transitivity and right-identity). The
particular subset we use is characterised by the
description logic EL+⊥. OWL 1.1 is supported
by, for example, the latest development-release of
Protégé (4.0 alpha).
Unfortunately, OWL is not practical for represent-
ing large ontologies like SNOMED where an OWL
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SNOMED FULL-GALEN NOT-GALEN NCI
CEL 1391.9 368.9 5.4 1.8
snorocket 72.8 15.1 0.4 0.4

Table 1: Comparison of classification time for snorocket and CEL running on the same hardware.

XML representation is approximately 240MB [15],
about eight times the size of the equivalent KRSS
representation. Moreover, due to the complexities
inherent in parsing XML, it is much slower to load
and parse than a simpler format such as KRSS.
One work-around for this, and something that
would greatly benefit the e-health community,
would be for the International Health Terminology
Standards Development Organisation, the newly
formed governing body of SNOMED, to formally
publish URIs for the concepts in SNOMED. This
would allow tool vendors to “bake in” SNOMED
to their tools, while still allowing other OWL-
based ontologies to reference SNOMED concepts
in a consistent and interoperable manner in order
to describe extensions to SNOMED.

CONCLUSION

Our preliminary work on producing local exten-
sions to SNOMED for semantic data integra-
tion is promising as is the performance of our
classifier. The current implementation is single-
threaded and we anticipate a further speed in-
crease from a multi-threaded implementation run-
ning on a multi-core CPU.
We are currently integrating snorocket with a 3rd-
party SNOMED editing tool which requires spe-
cific support for SNOMED’s use of role grouping
and the ability to distinguish between stated and
inferred relationships in the output of the clas-
sifier, although this adds little overhead to the
classification time. In addition, we are prototyp-
ing mapping tools specifically targeting the task of
constructing local extensions of SNOMED from
existing data.
Finally, we are continuing work on our incremental
form of the algorithm but have not yet tuned or
verified the implementation. Preliminary results
indicate that this approach should be very useable
when integrated with our mapping tool.
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Why do it the hard way? The Case for an Expressive 
Description Logic for SNOMED

Alan Rector, Sebastian Brandt
School of Computer Science, University of Manchester, Manchester M13 9PL,

 (rector | brandt @cs.manchester.ac.uk

Since SNOMED-RT/CT was originally formulated 

in the early to mid 1990s, there have been major 

developments in logic-based formalisms, ontology 

design and associated tools.  Combined with the 

increase in computing power in the past two dec-

ades, these developments mean that many of the 

restrictions that limited SNOMED’s original for-

mulation and schemas no longer need apply.  We 

contend that future development of SNOMED 

would be made easier if a more expressive formal-

ism and more modern tools were adopted.

The difficulties in the existing structure of 

SNOMED have been well documented.  For exam-

ple,  Bodenreider (1) examined the specialization 

hierarchy of SNOMED classes.  Schulz discussed 

‘relationship groups’ (2) and a broad range of other 

ontological problems along with potential remedies 

(3).  Schulz suggested a modest extension of 

SNOMED’s formalism to one with more clearly 

defined semantics (EL+) but which still lacks true 

negation and disjunction.  We argue here that  judi-

cious use of a more expressive language, OWL 

1.1
1
, is now practical and would bring great bene-

fits including:

• A uniform, clear and understandable schema 

for all concepts used in clinical records, in-

cluding context and negation.

• Elimination of the need for special mecha-

nisms to deal with context, partonomy, and 

role groups.

• More effective leveraging of the underlying 

logical representation to organise and quality 

assure the SNOMED hierarchies.

• Improved ability to recognise semantic equiva-

lence between post-coordinated and pre-

coordinated expressions and between “observ-

ables” with “values” and the corresponding 

“findings.”

• Improved ability to modularise and segment 

SNOMED for specific purposes

• Access to the tools and techniques being de-

veloped by the wider Semantic Web and OWL 

communities.

In outline, the proposals are:

• To represent all concepts used in clinical re-

cords (findings, observables, and procedures) 

1
http://www.webont.org/owl/1.1/

uniformly as fully defined “situations” that in-

clude any context required and that deal with 

negation explicitly and formally.

• To represent all sites explicitly as to whether 

they refer to the site in its entirety or to the dis-

junction of the site and its parts. 

• To define observables and related findings in 

such a way that the classifier can be used to 

recognise the equivalence between a situation 

involving an observable with a given value and 

the corresponding finding of the observable 

with that value – e.g., between an observable 

of “blood pressure” qualified by “elevated” 

and a finding of “elevated blood pressure”. 

• To organise the stated form as a set of modules 

that can be separated for specific applications.

Details of the proposed mechanisms are described 

in the extended version of this paper and in (4, 5).

Although the effort to migrate any large software 

object should not be underestimated, most of the 

proposed changes would cause few changes to the 

schemas except for “Situations with specific con-

text,” which are known to be problematic. (How-

ever, the proposed analysis would identify many 

errors to be corrected.) The effort would be more 

than repaid by providing a more regular and consis-

tent system that would improve usability and sim-

plify software development and query formulation.  

We argue that a feasibility study using a modest 

subset of around 25K concepts should be an urgent 

priority for the SNOMED community.
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Leveraging SNOMED CT with a General Purpose Terminology Server 
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Apelon, Ridgefield, CT, USA 

weida@apelon.com 
General purpose terminology server software 
facilitates coordinated use of multiple standard 
medical terminologies for diverse healthcare 
applications. SNOMED CT is an important clinical 
reference terminology, whose size and scope make 
advanced terminology server capabilities 
particularly useful.  Moreover, capabilities tied to 
SNOMED CT’s special features and requirements 
can result in substantial further benefits. 
Enhancements to a general purpose terminology 
server have been developed to facilitate the tailored 
creation, validation, organization, deployment, 
distribution, submission and maintenance of (post-
coordinated) extensions to SNOMED CT.  

INTRODUCTION 

Standard medical terminologies are vital to all sorts 
of contemporary healthcare information technology 
endeavors, ranging from encoding and exchanging 
information in electronic health record (EHR) 
systems to facilitating outcomes analysis and decision 
support. However, effective integration of 
terminologies into clinical applications poses 
substantial challenges. These applications generally 
require multiple terminologies since each terminology 
has been designed for different purposes by different 
healthcare constituencies, e.g., SNOMED CT for 
representation of clinical data; ICD-9-CM, ICD-10-
CM and CPT-4 for reimbursement; LOINC for 
laboratory test results; and HL7 for application 
interfaces. Drug nomenclatures such as RxNorm and 
NDF-RT, device taxonomies such as UMDNS, 
specialty ontologies, and others are also important, as 
are enterprise-specific terminology enhancements. 
Terminologies employ different data models and they 
are delivered in different data formats. Finally, 
terminologies are constantly evolving, so they must 
be regularly updated in clinical and other 
applications. However, revision schedules and 
processes vary widely and are often inconsistent. 
Such challenges can be effectively met with a 
comprehensive, general purpose terminology server, 
defined as a networked software component that 
centralizes and integrates terminology content and 
reasoning to provide (complete, consistent, effective) 
terminology services for users and other network 
applications. Earlier terminology servers1,2,3,4 did not 
provide the modular classification, subset, template or 
SNOMED-specific features described here. 

Terminology servers support diverse applications. 
For example, they are used by informaticists to 
create, maintain, localize and map terminologies; by 
clinical applications and their users to select and 
record standardized data; and by software integration 
engines to map data elements between applications. 
SNOMED CT is of special interest due to its broad 
clinical scope, extensive detail, formal structure, and 
international standing.5,6 This paper describes some 
ways that one general purpose terminology server has 
been enhanced and applied to support SNOMED CT 
within the context of a full complement of other 
healthcare terminologies. 

DISTRIBUTED TERMINOLOGY SYSTEM 

Apelon’s Distributed Terminology System (DTS) is 
an open source terminology software suite whose key 
component is a terminology server. DTS is robust and 
mature, benefiting from years of production 
deployment in diverse healthcare industry settings. It 
has been used by software and content vendors, 
pharmaceutical companies, government agencies, 
universities and research institutions, healthcare 
delivery systems, and standards development 
organizations around the world.  

DTS Architecture 
DTS employs typical three-tier architecture, as 
illustrated in Figure 1. Multi-tier architectures offer 
many well known advantages, including the ability to 
support highly flexible, easily scalable, and extremely 
dependable deployment solutions.  
 

DTS
Database

DTS Server

DTS 
Editor

Tomcat
(DTS Client)

DTS Client
Application

DTS 
Browser

 
Figure 1 – DTS Architecture. 
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The DTS client tier (below the DTS Server in Figure 
1), provides both Java and .Net APIs for developing 
custom terminology applications. DTS comes with 
packaged client applications such as an extensible 
desktop (fat client) terminology editor, the DTS 
Editor. There is also a web-based (thin client) 
terminology browser, the DTS Browser, which 
requires an Internet browser and an intermediary 
Apache Tomcat (or equivalent) web server.  The 
middle tier of DTS consists of the DTS Server, a 
terminology-focused application server which 
supports highly concurrent, authenticated access to 
terminology services via the APIs. It features 
numerous performance optimizations, logging, 
tracing, remote monitoring, etc. The APIs support 
browsing, navigation, search, query, editing, 
localization, mapping, subsetting and other common 
terminology operations. A relational database 
comprises the third – or data – tier of DTS, shown at 
the top of Figure 1. In addition, DTS supplies various 
utilities for software and content management, 
including content subscription updates.  Readers 
interested in DTS features outside the scope of this 
paper are referred to the DTS White Paper7. 

DTS Namespaces 
DTS employs a unified content model for uniform 
access to diverse terminologies, including ones based 
on Description Logic (DL) such as SNOMED CT, the 
NCI Thesaurus and NDF-RT, as well as non-DL 
terminologies like CPT, ICD, and LOINC. A 
subscription service is available for all major medical 
terminologies (plus cross-terminology mappings) 
formatted for easy loading into DTS, ensuring that the 
latest versions of the terminologies are always 
available. A DTS namespace is the unit of 
management for content delivery (and access 
control). Thus, each standard terminology resides in a 
separate namespace so it can be independently 
updated and versioned. A mapping between 
(elements of) a pair of terminologies, e.g., from CPT 
to SNOMED CT, is also typically delivered in its 
own separate namespace. DTS also supports an 
unlimited number of local namespaces enabling users 
to create and maintain user- or organization-specific 
terminology data. These local terminologies are also 
housed in distinct namespaces, as are the local 
extensions to standard terminologies described below. 

DESCRIPTION LOGIC 

Description Logic (DL) is a well known field of study 
within the area of knowledge representation.8  DL is a 
type of formal logic focused on creating definitions of 
concepts and reasoning about them effectively. Thus, 
DL is well suited for expressing precise descriptions 
of medical concepts, including anatomy, diseases, 

drugs, procedures, and so on. DL enables clear and 
unambiguous formal definition of a concept’s 
meaning, primarily in terms of its relationships with 
other concepts. A given concept (e.g., representing a 
class of drugs) can be described succinctly by naming 
the concepts it specializes (more general classes of 
drugs) and introducing distinguishing characteristics 
(e.g., relationships to its ingredients). The logical 
consistency of an entire set of concepts, such as those 
comprising a medical terminology, is automatically 
tested and enforced. Moreover, logical consequences 
that are implicit in the given descriptions are 
automatically made explicit. 
 
A particular DL provides a language for describing 
concepts and a repertoire of logical inferences for 
reasoning about them. SNOMED CT uses the 
Ontylog DL9, which is also used for the US Veterans 
Health Administration’s NDF-RT (National Drug File 
– Reference Terminology) and the National Cancer 
Institute’s NCI Thesaurus, all standards of the US 
Government’s Consolidated Health Informatics (CHI) 
Initiative10. Ontylog syntax and semantics have been 
published in connection with the NCI Thesaurus.11 
Among the most powerful aspects of DL are its 
facilities for reasoning about relationships among 
concepts and thus automatically managing a logically 
consistent taxonomy (i.e., generalization hierarchy or 
“is-a” hierarchy) of concepts.  
 
The DL classification operation automatically 
organizes concepts into a taxonomy based on their 
logical descriptions. Software that implements 
classification is called a classifier. As a simplified 
expository example, a set of concepts { A, B, C, D, E, 
F, G, H, I, J } might be classified into the taxonomy 
shown in the top portion of  Figure 2, where A is a 
generalization of B, C and D; B is a generalization of 
E, F and G, etc. We will use this taxonomy in 
subsequent examples. Extant classifiers generally 
create an explicit representation of a taxonomy, 
including explicit information corresponding to each 
of the lines shown between pairs of linked concepts. 
The Apelon classifier generates a very high 
performance, in-memory “classification graph” which 
includes all information necessary to continue 
classifying additional concepts in the future.  
 
As a result of classification, each concept in the 
taxonomy is guaranteed to be more specific than its 
parents and all other ancestors (directly or indirectly 
connected concepts above), as well as more general 
than its children and all other descendants (directly or 
indirectly connected concepts below). Therefore, 
concepts are always found in predictable locations. 
That makes it easier to envision relationships among 
concepts and to recognize unintended results. Well-

Representing and sharing knowledge using SNOMED
Proceedings of the 3rd international conference on Knowledge Representation in Medicine (KR-MED 2008)
R. Cornet, K.A. Spackman (Eds)

17



organized taxonomies allow medical knowledge (e.g., 
advice, rules, warnings, arbitrary codes, etc.) to be 
associated with concepts at the most appropriate level 
in the taxonomy (neither too general nor too specific) 
and appropriately inherited by (implicitly associated 
with) descendant concepts.  
 
A terminology is a collection of presumably related 
concepts. In DTS, a namespace is a set of concepts 
that are managed as a group. Thus, one can classify 
the set of concepts comprising a namespace into a 
taxonomy. Ordinarily, an entire terminology is 
contained – and thereby managed – in one 
namespace, e.g., all the concepts shown in the top 
portion of Figure 2 might comprise a single 
namespace. (For authoring purposes, some DLs allow 
terminologies to be composed by “importing” (the 
concepts of) one terminology into another, but the 
entire result is still classified monolithically.)  

MODULAR EXTENSION 
DTS terminology extension features are motivated 
largely by the existence of SNOMED CT and the 
desire of users to adapt it in diverse ways. SNOMED 
CT contains hundreds of thousands of concepts. New 
versions of SNOMED have been released twice 
yearly. Many different users (persons or 
organizations) may wish to extend SNOMED by 
adding their own concepts. The SNOMED data 
model provides for this possibility. Indeed a single 
user may be interested in extending SNOMED 
several different ways. However, it is important to 
clearly distinguish the authoritatively published core 
of SNOMED from any extensions thereof. 
Furthermore, it is important to classify terminology 
extensions, including post-coordinated expressions, 
as rapidly as possible. Traditional classifiers organize 

an entire set of concepts into a taxonomy by “starting 
from scratch” and classifying (processing) each and 
every concept in turn. 

Modular Classification 
DTS uniquely facilitates multiple independent 
extensions of a concept taxonomy based on DL. 
Separate classification operations determine how one 
or more distinct sets of additional concepts, each 
comprising an extension, fit in with the original 
taxonomy while leaving the original taxonomy intact 
and without copying it. Classification results are 
recorded so that the original taxonomy as well as 
every extension thereof can be independently 
browsed, searched, queried and retrieved on demand. 
As a result, DL taxonomies such as SNOMED CT 
can be extended easily and accurately, using the same 
language as the original, in multiple independent 
ways, to meet local and/or specialized needs in a 
timely manner. We call this process modular 
classification. Thus, DTS introduces effective means 
for working with multiple independent extensions of 
an existing taxonomy while preserving the integrity of 
the original. Indeed, DTS uses the same classification 
software used in the creation of SNOMED CT.  
 
We will refer to an existing, self-contained 
namespace, e.g., a namespace containing SNOMED 
CT, as a base namespace. Concepts therein are 
referred to as base concepts. Then, an extension 
namespace contains one or more additional concepts 
to be classified, viewed, and otherwise used as if they 
were also part of the base namespace, but without 
altering and without copying the base namespace. 
Concepts within an extension namespace are referred 
to as extension concepts.  
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Figure 2 - Base Namespace Taxonomy (top) with Multiple Independent Extended Taxonomies (bottom). 
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The modular classifier operates on DL elements of 
SNOMED extension concepts defined in extension 
namespaces. These concepts are linked by SNOMED 
relationships to other concepts in the base namespace 
and/or the same extension namespace. DTS extension 
namespaces can also contain other local information 
about core SNOMED concepts. Examples include 
additional local synonyms; local associations 
connecting them to or from other concepts, e.g., to 
represent mappings from a local terminology; and 
local properties (attribute value pairs, e.g., to indicate 
that a procedure is performed locally, or that a certain 
person last edited the concept).  In all cases, 
extensions to SNOMED CT could become 
problematic if a base SNOMED concept is later 
retired. Reports detailing any such connections are 
available, thus allowing for remediation. 
 
As an example, the fictitious Podunk Hospital may 
wish to extend the SNOMED CT base namespace 
with a Podunk Hospital extension namespace. That 
extension namespace may include an extension 
concept for a disorder, Familial vertigo, with 
definitional relationships to several base concepts in 
SNOMED CT. In general, an extension concept can 
be defined in terms of its relationships to base 
concept(s) and/or fellow extension concept(s). The 
user’s definition of Familial vertigo is shown on the 
right in Figure 3. This definition was created 
interactively within the DTS Editor, drawing from 
concepts and relationships (roles) in the standard 
SNOMED CT Namespace. Following modular 
classification, the position of Familial Vertigo with 
respect to one branch of the SNOMED taxonomy is 
shown on the left. Of note, the classifier has inferred 
the position of Familial Vertigo directly under a 
concept Labyrinthine disorder not mentioned 
explicitly in its definition. The DTS Editor italicizes 

extension concepts in the context of a base 
namespace for emphasis.  
 
In the interest of clarity and brevity (SNOMED CT 
has hundreds of thousands of concepts), the upper 
portion of Figure 2 shows a much simpler sample 
taxonomy for a base namespace. Beneath that are two 
independent extensions, one where the taxonomy is 
extended with a namespace consisting of the concept 
X1, and another where the taxonomy is extended with 
a namespace consisting of the concept X2. Notice that 
an extended taxonomy effectively contains the entire 
set of concepts from the base namespace augmented 
with additional concept(s) from the extension 
namespace. The dashed lines are intended to suggest 
that while the relationships of the extension concepts 
to the base taxonomy have been determined, they are 
not (destructively) spliced into the original base 
taxonomy (shown with solid lines). While these 
simple illustrations show only one concept per 
extension, an extension can of course contain an 
arbitrary number of concepts. We have used the DTS 
modular classifier with an extension namespace that 
(experimentally) extends SNOMED with LOINC 
laboratory concepts, and another extension 
namespace containing the US Drug Extension12, each 
containing well over 15,000 concepts. 
 

A base namespace may have multiple extensions 
which depend on it; extensions are mutually 
independent. Multiple independent namespaces 
extending SNOMED CT might have a variety of 
custodians and purposes, including a person (for 
learning and testing), a project (for research and 
development), an organization (for specific 
institutional needs), a specialty society (for 
terminology related to their practice area), national

 
Figure 3 – DTS Editor with Extension Concept (right) and Extended Taxonomy (left).
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authorities, or even the creators of the base 
namespace themselves (e.g., to preview possible 
future enhancements to the base): 
 

 
 
So far, we have focused on authoring sets of concepts 
covering a unified extension of interest. However, it 
is important to note that modular classification is 
equally adept at “on the fly” post-coordination of new 
concepts in accord with the SNOMED model, e.g., to 
help populate EHRs at run-time using the DTS API. 
Logical equivalence (hence redundancy) with a base 
concept or another extension concept is always 
detected and reported by the modular classifier. 

SUBSETS  

Considering the large size and broad scope of 
SNOMED CT and other contemporary medical 
terminologies, it can be extremely helpful to work 
with smaller, more focused subsets of terminologies 
when populating pick lists in EHR systems or fields 
in HL7 messages (HL7 value sets), constraining 
searches to pertinent concepts for data matching and 
analysis, etc. Subsets of interest can themselves be 
large and therefore challenging to maintain when the 
underlying terminologies are revised, e.g., concepts 
that are members of the subset may be retired and 
new concepts that should become members may be 
introduced. Enumerating each element of a large 
subset is tedious, opaque and often highly inefficient. 
Therefore, DTS takes a constructive approach to 
subset specification: a concise subset expression 
compositionally defines an arbitrary subset by 
specifying member concepts according to their 
names, synonyms, other properties, and relationships. 
Subset expressions can specify inclusion or exclusion 
of identified concepts and/or all of their descendants 
in the (base or extended) taxonomy.  Moreover, 
subset expressions can be arbitrarily nested to include 
sub-taxonomies, exclude portions thereof, etc. Subset 
expressions can use various concept attributes, even 
those that refer to other namespaces, e.g., we can 
specify all SNOMED chronic diseases mapped to 
ICD-9-CM but (strictly for illustration) excluding 
chronic drug abuse and chronic drug overdose: 

 
 
Visualization of subsets greatly aids review and 
revision. The DTS Editor (and likewise the web-
based browser) can highlight subset members in the 
larger context of the entire SNOMED taxonomy; note 
the subset member concepts highlighted in gold: 
 

 
 
The DTS Editor can also render and browse the 
hierarchical structure of the subset members alone, 
just as if all non-members were spliced out of the 
original taxonomy (not shown for brevity). Of course, 
DTS can also enumerate and export subsets, test for 
subset membership, search within subsets, etc. All of 
these features are available in the DTS Editor GUI 
application and also via the DTS APIs for runtime 
application integration. 

TEMPLATES 

Since DTS is a general purpose system for arbitrary 
terminologies, the DTS Editor enables unconstrained 
editing using generic terminology constructs. 
However, the SNOMED model carefully constrains 
concept definitions. Particular types of concepts 
(within a particular SNOMED hierarchy) are to be 

SNOMED CT 

Personal 
Extensions 

Project 
Extensions 

Organization
Extensions 

Specialty  
Extensions 

Authority 
Extensions 

Representing and sharing knowledge using SNOMED
Proceedings of the 3rd international conference on Knowledge Representation in Medicine (KR-MED 2008)
R. Cornet, K.A. Spackman (Eds)

20



defined using particular SNOMED relationships to 
target concepts chosen from particular portions of 
SNOMED. The DTS Template Builder (a DTS Editor 
“plug-in”) has been developed to specify templates 
for context-dependent editing in compliance with 
such a model. Due to space restrictions, the following 
example is necessarily very abbreviated and 
simplified but conveys the gist.  
 
Suppose we need to extend SNOMED with more 
procedures. The SNOMED CT Users Guide specifies 
that the value of a Direct substance relationship 
(when present) on a Procedure concept should be a 
Substance or a Pharmaceutical/biological product. 
Thus, we create a Direct substance subset: 
 

 
 

As we create a template for our procedures, we can 
require a value for the Direct substance relationship 
and require that it be restricted to members of our 
Direct substance subset: 
 

 

The Direct substance relationship is one attribute of 
an overall template for My Procedures (which are 
concepts in the My SNOMED Extension namespace): 
 

 
 
The DTS Template Editor enables creation and 
modification of concepts according to such templates. 
It reports an error if we attempt to use a concept that 
is not a member of the specified subset as the value 
for a Direct substance relationship: 
 

 
 
The Template Editor accepts a member of the subset, 
as in this definition of Snake venom identification: 
 

 
 
Notice the template-specific labels: Procedure name, 
Defining procedure and Direct substance.   Absent 
any intervening extension concepts, the modular 
classifier will place this Snake venom identification 
extension concept directly under the Toxin detection 
(procedure) concept from the SNOMED CT base 
namespace. 
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DISTRIBUTION AND SUBMISSION 

There are several ways to transfer terminology 
content into, out of and between DTS instances. 
Apelon distributes full and incremental versions of 
many standard (and custom) terminologies using a 
compact data format which closely corresponds to the 
DTS database schema and can therefore be loaded 
very efficiently. DTS enables users to distribute their 
own DTS terminology content in the same format. In 
addition, DTS includes graphical tools – the import 
wizard and the export wizard – to easily move ad hoc 
terminology content in and out of DTS using 
delimited text and XML formats. However, 
SNOMED CT has its own release format, consisting 
of a set of related files, tailored to the SNOMED data 
model, which specifically support SNOMED 
extensions. A SNOMED CT Identifier (SCTID) 
uniquely identifies all concepts, descriptions and 
relationships in SNOMED CT. Those who wish to 
extend SNOMED CT can request their own, 
exclusively assigned range of SNOMED CT 
identifiers. To facilitate creation and distribution of 
SNOMED extensions using DTS, we have 
implemented new DTS capabilities in collaboration 
with a national terminology authority and with a 
leading academic medical center. These capabilities 
include generation of SCTIDs for all elements of a 
SNOMED Extension namespace in DTS, as well as 
import and export of extension namespaces in 
SNOMED release format. Thus, SNOMED 
extensions can be readily shared with collaborators, 
and as appropriate, could be submitted for possible 
inclusion in the SNOMED core. The fact that these 
extensions have already been successfully classified 
together with the SNOMED core should expedite 
review and possible acceptance. 

CONCLUSION 

Apelon DTS, now available via open source 
licensing, has proven to be a popular tool for 
enterprise terminology asset management, featuring 
comprehensive capabilities for working with multiple 
standard and local terminologies, both individually 
and in concert (e.g., via mappings) using a unified 
suite of software components. Recognizing the 
importance of SNOMED CT, we have added 
significant functionality to meet SNOMED’s unique 
requirements and benefit from its unique capabilities. 
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Figure 1- Detailed relationships types are needed
to define subtle semantic differences
A large set of relationship types allows definition of
subtle semantic differences as for example the
relationship to time, which is needed to discriminate
an intraoperative with a postoperative complication
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ABSTRACT

In this paper a description is presented in which
the architectural, lexical and mapping differences
are foregrounded between two compositional
systems, both operating in the health care domain:
LinkBase® and SNOMED. Based on these
distinctive features, repercussions on NLP
applications are exemplified and briefly discussed.

1. INTRODUCTION

The use of an ontology as a resource to access and
aggregate several different types of medical data
for a range of purposes inside healthcare
information systems has demonstrated significant
advantages. Nevertheless, this very variability of
the healthcare information to be reconciled within
and across different healthcare organizations, as
well as the diversity of information systems
accessing this information, imposes a challenge on
the identification of the ontology of choice. This
document intends to describe a direct comparison
between two medical domain ontologies, The
Systemized Nomenclature of Medicine
(SNOMED)1,2,3 and LinKBase®4, from the
perspective of their applicability to healthcare
information systems and their embedded
requirements. This comparison focuses on
structural and lexical aspects, as well as differences
in mapping methodology.

2. STRUCTURAL DIFFERENCES

2.1 Relationships and the principles behind
them

SNOMED and LinKBase® are compositional
systems: ontologies in which concepts can be
specialized through combinations with other
concepts. Both are based on Description Logics
and contain binary relationships that interconnect
the concepts. To enable semantic reasoning, a
consistent meaning of the relationships is
indispensable.

2.1.1 Relationships in LinKBase®
Concepts in LinKBase® are interrelated by a set of
383 relationship types that are structured in a multi-
parented hierarchy, in which both the formal
realistic ontological implications and the linguistic
aspects of the relationships are taken into account.
Most relationships are based on theories5, that deal
with topics such as mereology and topology6,7, time
and causality8 and models for semantics driven
natural language understanding9, 10. The large set of
relationship types allows LinKBase® to define the
sometimes subtle semantic differences between
concepts (figure 1).

In LinKBase®, consistency is maintained
throughout the entire system for all types of
relations by enforcement of an ontological
principle named the “Principle of 100 % true
relationships”4. According to this principle
concepts can only receive a specific relationship if
that relationship is true for all subclasses and
instances of that concept. For example, in
LinKBase®, “meningitis” will never be a subclass
of “infectious disease” since it is not always the
result of an infection. The concept “infectious
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meningitis”, on the other hand, is always caused by
an infection and is a subclass of both “infectious
disease” and “meningitis”.

2.1.2 Relationships in SNOMED
The set of relationship types in SNOMED is much
smaller as compared to LinKBase®. SNOMED
contains 50 relationship types and although a more
restrictive, smaller set of relationship types might
yield an easier to manage and utilize ontology for a
user, a more granular set of relationship types
allows the introduction of unique formal definitions
to a much larger set of concepts in the ontology.
For example in SNOMED the concepts
‘intraoperative care’ and ‘postoperative care’
cannot be defined, because there are no
relationships which are specific enough to relate
two procedures in different time aspects. In
LinKBase® on the other hand these concepts can
be defined by adding a temporal relation to the
concept ‘surgical procedure’, the former relation
being ‘occurs-during’ and the latter ‘occurs-after’.

The SNOMED relationship types are divided into
three types: defining, refining and additional
relationship types. Only the former type ‘defining’
are used to insert truly ontological information
used, as its name states, to logically define
concepts. ‘Refining’ relationships on the other hand
can be seen more as application supporting artifacts
which allow concepts to be connected to
‘qualifiers’ in specific instances11. For example, the
concept ‘pneumonia’ contains the defining link is-a
to ‘lung disorder’ and the refining link clinical
course to ‘courses’. This latter relation allows for
the relating of specific instances of pneumonia to
one of the qualifier values under ‘courses’ as for
example ‘acute’ or ‘chronic’. As in the example
just described, for most concepts, the refining link
inside the ontology/terminology itself, is an empty
one. To the concept ‘pneumonia’, clinical course
‘courses’ does not add any useful information
except that ‘pneumonia’ can have a ‘course’.
In order to cope with this distinction on the essence
and use of relationship types SNOMED divides
them in the three categories mentioned above.
Also, when creating logical formal definitions for
its concepts, only the ontologically based relations
(‘defining’) are allowed to be used (see section
2.3). Although this restriction allows for the co-
existence of both ontological and non-ontological
information in the same syntax (i.e. binary
relations), it does introduce problems when a
refining characteristic becomes definitional for a
given concept. For example the concept “acute
inflammation” should ontologically be defined by
being an ‘inflammation’ which has an ‘acute’
course. This becomes impossible given the
‘refining’ characteristic of the relationship type

‘clinical course’. The compositional model of
SNOMED as such becomes limited to the specific
boundaries of its relationship types and their
characteristics. This impacts reasoning capabilities
(see section 2.3) and applications which would rely
on this resource such as decision support, run-time
semantic interoperability (e.g. in messaging) and
Natural Language Processing (NLP) and Natural
Language Understanding (NLU) or more
sophisticated Information Extraction.

SNOMED, just as LinKBase, aims at creating
‘defining’ relationships that are 100 % true.
However, due to its structure and automated
methods of hierarchy creation, inconsistencies are
created (i.e. relationships that do not fulfil the
“principle of 100 % true relationships”). A clear
example is shown in figure 2 where ‘amputation of
foot’ is incorrectly subsumed by ‘limb amputation’.
These errors are the result of the SNOMED
strategy to use Description Logic to create
hierarchies based on other hierarchies. Although
this is a valid method, the lack of specificity in
relationship types creates a problem: by basing the
procedure-hierarchy on the body part-hierarchy the
‘amputation of foot’ error was created.

The example in figure 2 is directly related to the
fact that SNOMED has only one relationship type

to relate a procedure with the procedure site: the
relationship type ‘procedure-site’. According to
formal ontological theories12 there are several ways
through which a given procedure may be related to
a body part. The body part might be removed or
placed during the procedure (e.g. excision or
transplant), it might be altered structurally (e.g.
incision), it might receive another structure (e.g.
implant) etc. For each of these cases the
participation of the body part is different, and only
for some of these cases ontological reasoning
properties, like transitivity, (see section 2.2) apply.
As such, applying transitivity over all instances of
the ‘procedure-site’ relationship creates
hierarchical inconsistencies like the one described
above. This occurs due to the fact that not all
instances of this relationship type within SNOMED
are in fact transitive. In order to make relationship
generation via reasoning, either at production time
to expand the ontology, or at run-time to connect
information to the ontology, it is necessary to have

Figure 2 - Incorrect subsumption in SNOMED
‘amputation of foot’ is incorrectly subsumed by
‘limb amputation’ since a foot is part of the limb,
not the limb in total
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relationship types logically defined and founded
solely on sound ontological theory.

2.2 Top structure: Presence of Upper- and Mid-
layer

Another structural aspect which determines an
ontology’s reasoning power and usability within
specific information systems is the nature of its
‘system of classification’. Here we refer to ‘system
of classification’ when discoursing about the
perspective into reality through which the concepts
are organized or classified within the ontology. The
‘system of classification’ refers to the ontology’s
top structure and top classes which subsume the
more granular ontological content. Ontological
systems of classification may reside at three
different layers: 1. The upper-layer, comprising of
a small set of the most general classes formalized
to be sufficient to described all that exists
(examples of these top classes are ‘process’
(subsuming for example a ‘hand-shake’ or a
‘surgical procedure’) or ‘property’ (subsuming for
example ‘temperature’)) , 2. The mid-layer,
comprising of more specific classes, which are
shared by different domains (for example
‘temperature’ (subsumed for example by ‘fever’
(medical domain) or ‘atmosphere air temperature’
(aviation domain), 3. The domain specific layer,
comprising those classes specific to a given domain
and organized according the perspective this
domain takes at the world.

A domain ontology in information sciences is
commonly a data model, holding a set of concepts
and relationships between those concepts for a
particular domain of interest, and represents or
reflects ‘reality’ through that model of domain. It is
used to reason about the objects within that
domain. Both LinKBase® and SNOMED are
medical domain ontologies, dealing with those
aspects which make up the world of medicine.
Formal ontology implies that the model is governed
by strict logical (formal) axioms; in the case of
LinKBase®, the mereological, axiomatic scheme is
applied, which results in a structure characterized
by: reflexivity (a concept A is part of itself), anti-
symmetry (two distinct concepts cannot be part of
each other) and, transitivity: if concept A has a
transitive relation to concept B, and B has the same
transitive relation to concept C, then A has also this
same transitive relation to concept C.

The difference between the two resources in
respect to this structural aspect pertains to the type
of system of classification or top layer structure
that each of them applies. Structurally SNOMED is
a shared, health care classification system
generated and applied by the medical domain and
its actors. Its main branches (18 totally) and
embedded top nodes or concepts are derived from a

strictly medical classification perspective and
reflect those entities through which the domain of
medicine views and divides its realm (examples are
Clinical Finding (main branch), Procedures (main
branch), Body Structure (supporting branch),
Substance (supporting branch), Organism
(supporting branch), Context-Dependent Category
(bridging branch), and Qualifier Value (bridging
branch). LinKBase® applies an upper-layer and a
mid-layer ontology at the top of its medical
classification. The upper-layer is comprised of
classes derived from the Basic Formal Ontology
(BFO)5, while the mid-layer is comprised of those
generic domain unspecific concepts which connect
the domain specific layer to the upper-layer
concepts4 (Examples of upper-layer concepts are
(1) ‘perdurants’ (processes) or concepts with a time
component, and (2) ‘endurants’ or concepts without
a time component. Examples of mid-layer concepts
are ‘temperature’ or ‘movement’). From a usability
perspective, the presence of an upper-and mid-layer
influences on the degree of intelligence and
specificity of logical reasoning and/or other process
automation algorithms which can be applied over
this ontology. Data integration and warehousing,
semantic operability and NLP applications have the
frequent need of mapping terminology (either in
databases and terminological systems, data entry
systems or free text documents) to the concepts in
the ontology. Given the large degree of ambiguity
in medical terminology, it is difficult to decide
upon mappings between different concepts when
performing terminological matching. The presence
of an upper-layer ontology can strongly assist in
this process. Figure 3 shows the example of an
ambiguity which can be solved by combining
language syntactical information with upper level
ontological information: the term ‘transposition’
can either mean transposition as a surgical
procedure (transposing a given part of the body to
another part) (figure 3, panel A), or a transposition
as a pathological structure (a part of the body
which is constituently displaced) (figure 3 panel
B). The fact that the term in the sentence in figure
3A functions as the object of the verb ‘repair’
which in its turn instantiates the concept ‘surgical
repair’; and that this concept is subsumed by the
upper level concept ‘process’ which can only have
‘substances’13 as its participants, allows the
deduction that the concept in question is the
‘transposition’ as a pathological structure due to the
fact that this concept is subsumed by the upper-
layer concept ‘substance’. Opposed to the scenario
above, in figure 3B the term transposition is related
to the term ‘technique’ as if this latter was one of
its ways through or one of its parts; this combined
with the fact that a ‘technique’ is instantiated by
processes and that processes can only have other
processes as its parts, allows us to deduce that
‘transposition’ in this case must be a process and
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therefore disambiguate to the surgical
procedure14.

Another consequence of the lack of an upper-and
mid-layer structure is the need to create so called
‘ad hoc hierarchies’ to place those elements which
do not pertain to any of the main domain classes,
but which are nevertheless still important to
represent the domain. An example of these is the
main branch ‘Qualifier Value’ in the SNOMED
system. The concepts under this hierarchy are only
represented as values of an attribute or context used
to represent other concepts or nodes inside
SNOMED. As such nothing else can be understood
or deduced about the essence and meaning of these
concepts besides the fact that they can be used to
‘qualify’ other concepts. For example the concepts
‘entrance’ or ‘exit’ in SNOMED are classified only
as ‘any hazardous entity’ without the ontological
information of them actually being ‘openings’ (i.e.
structures with a hole). Given the heterogeneity of
the elements classified in such ad hoc top nodes,
little to no formal reasoning can be applied safely
over this content since no ontological property can
be generalized and implied for it.

2.3 Methods and principles behind full
definitions

Ontologies written in description logics15, such as
the case of both ontologies being compared in this
document, rely on an artifact called a ‘formal
definition’ in order to apply reasoning and as such

explore the ontology’s intelligence inside
information systems. Formal definitions in
description logics are elements composed of a
(sub)set of a concept’s relationships towards other
concepts (both hierarchical and horizontal), which
are supposed to uniquely define this given concept.
For this particular ontological element, the
distinction between the two ontologies here in
question is given by the principles which govern
the assignment of a formal definition to a concept,
as well as by the methods used to insert and/or
generate these formal definition assignments.

According to SNOMED a formal definition of a
concept comprises “the set of relationships which
together define that concept plus an indication of
whether this definition fully-defines the concept
(i.e. whether the concept is primitive or fully-
defined)”11, where all present defining relationships
are used in the computation of this definition. For a
defining relationship SNOMED understands those
relationships which “are always known to be
true”16 (see section 2.1 in this document). When a
concept is marked as ‘fully defined’ in SNOMED it
implies that all ‘necessary’ relationships required
to uniquely define the given concept in
SNOMED’s terms have been asserted to that
concept.
In counterpart to the computational method of
asserting formal definitions of SNOMED described
above, the formal definitions in LinKBase® are
asserted manually by human domain experts in
100% of the cases. This allow for the introduction
of an extra notion in the principle which govern
this formal definition assignment. Besides the
notion of the ‘necessary’ relationships, the notion
of the ‘sufficient’ relationships is also taken into
account. For LinKBase® the smallest set possible
of relationships which is ‘sufficient’ to define a
concept comprises the concept’s full definition,
instead of the complete set of defining relationships
such as it is with SNOMED. Figure 4 shows an
example of the distinction between a formal
definition of a concept as assigned by SNOMED
(top panel) compared to what the definition would
be if the notions of necessary and sufficient would
be applied (lower panel). By applying the notion of
‘sufficient’, the set of relationships which comprise
a formal definition becomes smaller, resulting in a
reduction of computing time when reasoning over
the ontology, since fewer conditions must be cross-
checked. In addition, data retrieval is enhanced
since the set of conditions to fulfill in order to
result into correct subsumption, is smaller.

Another distinction in the nature of formal
definitions between these two ontologies is given
by the degree of specificity of their relationship
types. LinKBase® is very granular with respect to
the creation of relationship types, allowing the
creation of a new relationship type for each unique

Figure 3 - Example of Ontology-based
Terminological Disambiguation: ‘transposition’
as a congenital abnormality See text for details
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Figure 4 - Necessary versus Necessary AND
Sufficient conditions for assigning formal
definitions to concepts See text for details

notion of how two concepts can be related in the
real world17. SNOMED in counterpart is more
restrictive, allowing only for a specific set of
attributes (i.e. relationship types in SNOMED’s
terminology) to be used for particular hierarchies16

(see section 2.1.2.) In summary, an ontology with a
vast set of formal definitions has an exceptional
capacity to reason both inside itself and over any
external data that is connected, mapped or pointed
to the ontology.

3. LEXICAL DIFFERENCES

The connection between an ontology and its
lexicon is given by the assignment of terms (natural
language descriptions) in the lexicon to the
concepts and relationships within the ontology,
where the ontological content become the
symbolized elements while their lexical counterpart
are the symbols. Although the content, in terms of
the nature or types of descriptions, of both
LinKBase’s® and SNOMED’s lexicons is quite
similar, the distinction between these two
resources, regarding this particular aspect, is given
by the assignments of language descriptions to the
ontological content. In addition, the lexicon of
SNOMED and LinKBase® differ in their
grammatical content.

3.1 Principles behind and nature of synonym
assignments

LinKBase® follows a defined set of principles17 for
term assignment which intends to assert that every
term assigned to an ontological element is strictly a
natural language representation (synonym) for this
specific element. SNOMED in counterpart allows
for the association of not only terms that represent
strictly the given ontological element in question,
but also of other terms which are somehow related
to this given element either from a taxonomic
standpoint (i.e. more generic terms assigned to
more specific concepts) or from a clinical
perspective (e.g. terms representative of a symptom
assigned to concepts representative of a disorder
which can manifest with this given symptom). An
example of this distinction showed in figure 5,
which demonstrates the collection of terms for the
concept which represents a “common cold” in both
ontologies. While in LinKBase® all terms assigned

to this concept are strict synonyms in natural
language for this notion, in SNOMED other related
terms like “infective rhinitis” or “acute coryza” are
also assigned. The former term “infective rhinitis”
is actually related to the concept which represents a
“common cold” from a taxonomic perspective (i.e.
common cold is one of the types of infective
rhinitis), while the latter is related from a clinical
perspective (i.e. acute coryza is one of the
symptoms which may be present in the presentation
of a common cold).

But how does this distinction affect the usability of
each of these ontologies? There are mainly three
use cases where we can see a direct influence of
one choice of term assignment vs. the other
described above. From a search and retrieval
perspective one can see a benefit from the broader
methods of term assignment of SNOMED, since
the user has a higher probability of finding a related
concept for the information he/she intends to

Figure 5 - Term assignments in LinKBase®
versus SNOMED This figure shows the
collection of terms assigned to the concept
‘Common Cold’ both in LinKBase® (right) and
in SNOMED (left) and exemplifies the difference
in principles behind these assignments.
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encode given the larger spectrum of related terms
to search for. On the other hand this larger
spectrum of term assignment introduces more
ambiguity as well as an ‘indirect hierarchical
inconsistency’ (when the ontology is viewed from
the lexical standpoint), which complicates
processes for automated data integration,
(semi)automated creation of mappings between
other external resources to be reconciled via the
reference ontology of choice, as well as for
semantic interoperability between information
systems relying on this ontology for their
connectivity.

The usability of the ontology as terminological and
intelligence resource inside NLP and NLU
applications is also highly influenced by the
principles applied behind terminological
assignment. While broader (non strict) synonym
assignment allows for simple uses of the ontology
in NLP, such as indexing, it will not yield
satisfactory results in more complex NLP/NLU
information extraction applications. This is due to
the fact that information extraction applications
need to make use of the ontology to understand the
very concept to which the text refers to, rather than
other related content, and then place this identified
concept into the context which surrounds it in the
given text. Clinical associations in this case for
example are highly disruptive, as it might lead the
application to conclusions not necessarily true for
the situation described by the given text being
processed. For example if a mention of “acute
coryza” is found in text when using SNOMED as
terminological resource, it would be directly
associated with the concept of “common cold”.
Nevertheless, in the particular text or instance in
question, the “acute coryza” could as well be due to
an allergy or to another disorder, which makes the
association to “common cold” incorrect yielding
erroneous results.

3.2 Specialized versus Non-Specialized lexicon

A computerized lexicon connected to a given
ontology can contain different degrees of
information about the terms or vocabulary it
contains. SNOMED’s lexicon is what we would
call ‘non-specialized’ lexicon, constituting mainly
from a collection of terms but without any extra
grammatical information about these terms or the
way they connect together. In counterpart
LinKBase® is connected to what we would call a
‘specialized’ lexicon, containing for each of its
terms (or lexemes in this case) information such as
their part of speech or their inflections.

This distinction is vital when considering the
ontology for use within NLP/NLU applications. A
non-specialized lexicon will allow for the access of

the ontology only from a basic indexing or key-
word tagging capability. More sophisticated
NLP/NLU applications frequently make use of a
syntactic parser, which makes the availability of
grammatical information about the terms or in
other words of a ‘specialized’ lexicon mandatory.

4. MAPPINGS AND MAPPING
METHODOLOGY

Terminologies and classifications are used for
different purposes and have different structures and
content. To allow exchange of information between
different data sources, they need to be connected.
For this reason, LinKBase® and SNOMED are
linked to 3rd party terminologies such as the
International Classification of Diseases (ICD)18 or
the Logical Observation Identifiers Names and
Codes (LOINC®)19. Although both are linked to
the original style and structure of these
terminologies, they have a different strategy for
building a bridge between them. Their solutions to
deal with differences in granularity, an important
but complex step20, especially differ.

The mapping relationship between a LinKBase®
concept and a concept or term in an external system
is always of complete ‘identity’. If needed,
additional concepts are created to solve differences
in granularity. In contrast, SNOMED solves
differences in granularity with the creation of
‘narrow to broad’ or ‘broad to narrow’
relationships or no relationships at all, e.g. the
concept SNCT2 : 276792008 : PULMONARY
HYPERTENSION WITH EXTREME OBESITY
(DISORDER), has a ‘narrow to broad’ relationship
to the concepts: ICD-9-CM : 416.8 : OTHER
CHRONIC PULMONARY HEART DISEASES
and ICD-9-CM : 278.00/ : OBESITY,
UNSPECIFIED. Needless to say, that the
SNOMED approach results in an incorrect
representation of the other terminologies. For
example, the LOINC® codes for the two most
common tests to diagnose pertussis in humans are
LOINC® 548-8 and 549-621. Although these
LOINC® codes represent an assay involving a
culture to test for the presence of Bordetella
pertussis, both are linked to the SNOMED codes
for the organism Bordetella pertussis and the
condition pertussis since no such ‘Bordetella test
culture’ exists in SNOMED. In LinKBase®
however, this difference in granularity is solved by
the creation of concepts that represent identical
tests and/or cultures as in LOINC® and to link
these to the condition and organisms involved. This
method not only allows the correct representation
of LOINC® and other terminologies in
LinKBase®, but also allows for the reusability of
existing mappings, the ability to cross map several
data sources simultaneously and the ability to
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transpose divergent levels of granularity between
external information sources20. The LinKBase®
system allows physicians to enter a diagnostic
term, to find its relationships based on its exact
meaning and to select the terminology system they
wish to use during a patient encounter. There is no
need to search multiple terminologies, LinKBase®
suffices, since the 3rd party terminologies are fully
mapped, based on a consistent meaning without
ambiguities.

CONCLUSION

In this paper, we have outlined some distinct
features between SNOMED and LinkBase®.
Currently, based on their differences in
architectural and lexical approach, the principles
behind these, together with their different mapping
methodology, LinKBase® seems to be more
suitable for use in NLP/NLU engineering.
However, the comparison also provides a
possibility to accommodate SNOMED to a level
that it can be integrated in NLP technology and be
used for the analysis of free text, as is the case for
LinKBase®.
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SNOMED CT is a complex ontology; sophisticated 
browsers are required to make it understandable and 
useful. We identified 23 SNOMED CT browsers that 
have been developed, and inspected 17. We 
enumerate and provide test criteria for a ‘master list’ 
of 143 browsing features supported by at least one 
inspected browser; future work will determine which 
of these features are implemented by individual 
browsers. Only 5 features were common to all 17 
browsers; 89 were found in less than one third of 
browsers. We recommend that a core set of browsing 
features be defined and harmonized across browsers, 
particularly for text-to-concept search operations. 

INTRODUCTION 

SNOMED CT is a biomedical ontology and an 
associated terminology1. Formerly owned by the 
College of American Pathologists, it has been 
managed since April 2007 by the International Health 
Terminology Standards Development Organisation 
(IHTSDO), a not-for-profit international standards 
body. As distributed, it is a large, complex and 
evolving knowledge artifact. Sophisticated browsers 
must make that complexity accessible and 
understandable, and suppress distracting or unwanted 
detail2-3. A number of different SNOMED CT 
browsers have been constructed since it was first 
published. Some have been evaluated for a variety of 
use cases, including coding of clinical data4-8 and 
terminology evaluation and management9. 
In this paper, we report interim results of a systematic 
inspection of some of these browsers. We enumerate 
a superset of browsing features, outline the variability 
with which these features are implemented in 
individual browsers, and consider the possible 
consequences of non-standardized browsing of a 
standardized terminology. 

MATERIALS 

SNOMED CT 
The core of a SNOMED CT release comprises three 
tables (sct_concepts, sct_descriptions and 
sct_relationships) collectively defining a 
compositional description logic ontology of the 
medical domain, and a lexicon of associated preferred 
or synonymous descriptions. The most recent 
international release (January 2008) contains 311,313 
active concepts, 1,357,719 relationships between 
those concepts and 794,061 active descriptions. 

Working deployments of SNOMED CT require 
additional or ancillary information linked to that core, 
usually provided by either the IHTSDO or a National 
Release Centre. Examples of such data include 
crossmaps to other clinical classifications (e.g. ICD-
10), definitions of subsets of concepts and/or their 
descriptions for navigational or localization purposes, 
and a history of changes between successive releases.  
The January 2008 IHTSDO release therefore 
comprised 21 discrete table components in addition to 
the 3 defining the core ontology. The April 2008 UK 
National Release, which builds on the January 2008 
IHTSDO release, comprised 122 separate tables. 
In addition to this centrally provided additional 
content, it is also possible to link external data to the 
core or ancillary data sources. For example, crossmap 
target codes can be linked to their corresponding 
native rubrics or hierarchies. 

SNOMED CT Browsers 
The authors and their colleagues identified 23 
different implementations of software10-28 offering 
SNOMED CT browsing capability – either embedded 
in larger application environments or available as 
standalone browsers. 16 of these10-23 were inspected 
as working software: CaTTS, CliniClue, CLIVE, 
EdBrowse, FDB Sphinx, HealthTerm, LexPlorer, 
Mycroft, NCI Terminology Browser, OntoBrowser, 
OpenKnoME, Protégé-OWL, SNOB, SnoFlake, the 
UMLS Rich Release Format (RRF) Browser and the 
Virginia Tech Browser. One additional feature was 
identified on a screen capture of the AxSys browser.  
AxSys, CLIVE, FDB Sphinx, HealthTerm and 
LexPlorer require user privileges to access; 
OntoBrowser and EdBrowse are unsupported in-
house prototypes. The remaining ten browsers are 
publicly available at zero cost. Both CliniClue and 
OpenKnoME require proprietary additional tooling to 
load SNOMED CT distribution files, although 
prebuilt CliniClue data is widely available. 
OpenKnoMe and OntoBrowser also require a 
proprietary terminology server.  
The remaining 6 browsers not inspected24-28 were: 
proprietary software from Informatics inc, Ocean 
Informatics and Visual Read; a demonstrator 
browser/encoder developed within the NHS Common 
User Interface Project; Kermanog’s CLAW product17 
based on SNOMED in ClaML (EN 14463) format; 
and Linköping University’s browser. These were 
excluded for reasons of time or lack of access. 
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METHODS 

Each browser was inspected by one author against an 
emerging catalog of all features exhibited so far by at 
least one previously inspected browser. Whenever the 
choice was given to us, browsers were inspected 
using content based on the July 31, 2007 international 
release of SNOMED CT. A subset of SNOMED CT 
content converted into OWL DL was used for 
Protégé-OWL inspection. 
The goal of each successive inspection was primarily 
to identify novel features implemented in the 
inspected browsers, for inclusion in a cumulative 
master catalog. The feature catalogue was iteratively 
organized by an emerging set of themes, and this 
resulted in a progressive systematization of the 
inspection process itself, with each theme considered 
in detail by turn. This iterative systematisation aided 
the process of new feature identification. 
Where possible, operational definitions of new 
features were specified (reproduced in Tables 1-3). 
Subsequent inspections progressed by browsing or 
searching the Test Case column entry, and comparing 
the displayed result with the Expected Result column.  
Although previously inspected browsers were 
subsequently re-inspected for newly discovered 
features, work is underway to confirm the validity and 
reproducibility of inspecting individual browsers 
against the feature catalog. Individual browser scores 
are therefore not presented here. 

RESULTS 

143 different browsing features were identified across 
17 inspected browsers. 6 further features occurred to 
the authors during the inspection process as being 
potentially useful, but were not found in any 
inspected browser. The combined set of 149 features 
are presented in the accompanying tables, organised 
under the 8 major themes outlined below. 
Our preliminary summary results, based on partially  
validated individual browser inspections, suggest 
most browser featuresets are an arbitrarily selected 
and small subset of all 149 features available. On 
average, individual browsers implement only 40 
features (Range 21-107, StDev=13), but only 22 of 
the 149 features were found in more than two thirds 
of all browsers inspected, of which only 5 were 
implemented in all inspected browsers (Search by 
ConceptID or by Exact string, display of a 
ConceptID, its linkage to a Description, and the text 
of that Description). 89 features were found in less 
than a third of all browsers, but 70 of these are found 
in at least two browsers. Overall, these results 
suggests that most possible browsing features have 
been implemented independently by several 
SNOMED browser developers, but they have yet to 
become ‘standard’ across most browsers. 

Core Data 
A minimal requirement for a SNOMED CT browser 
is to give access to the data in the three core tables 
(concepts, relationships, descriptions). Table 1 lists 
the 22 fields from each of the three core tables that 
might be displayed by a browser.  
Most browsers implement a concept-centric view of 
this core content, comprising one concept, its 
description(s), classification with respect to other 
concepts, and definition in terms of other concepts. 
This represents the minimum set of features required 
for the coding of clinical data and basic navigation. 
Some fields (e.g. ConceptStatus) appear in the source 
release data as coded numeric values whose 
interpretation is given only in SNOMED release 
documentation; most browser implementations 
display only the human readable interpretation of 
these codes and not also (or only) the numeric values 
as actually distributed. 
Despite their ‘core’ nature, however, only three of the 
22 related features were displayed by all browsers 
inspected: the Concept ID, a link to (at least one) 
description for a concept, and display of the text of 
linked descriptions. Description status and Initial 
Capital Status, Relationship ID and Refinability were 
each visible in only two or three browsers. 

Non-Core: Ancillary, 3rd Party and Derived Data 
Advanced navigation and terminology maintenance 
work may require either additional data outside the 
core tables, or ‘derived’ views of the core data itself 
such as ‘reverse’ historical relationships (showing 
which inactive concepts point at the current browser 
focus concept as their replacement). Table 1 lists the 
‘derived’ views found across the inspected browsers.  
A complete set of SNOMED core and ancillary 
linked data is large and complex. Further, it changes 
with each biannual release. To reflect this 
configuration and versioning complexity, some 
browsers report exactly which versions of which 
release components are loaded, alert users when they 
are browsing non-current data, and support 
concurrent browsing of multiple release versions for 
direct discovery or comparison of changed content. 
We found display of non-core data, and data from 
more than one release, to be the exception rather than 
the rule. Pointers from inactive concepts to their 
active replacement, and the set of concepts using the 
browser focus concept in their definition, are 
accessible in less than half of all browsers; all other 
ancillary, 3rd party or derived data browsing functions 
are present in less than one third of all browsers and 
usually only in two or three.  

Visualisation and Navigation 
Following from consideration of what data a browser 
displays is how it displays it. Additionally, the 

Representing and sharing knowledge using SNOMED
Proceedings of the 3rd international conference on Knowledge Representation in Medicine (KR-MED 2008)
R. Cornet, K.A. Spackman (Eds)

31



navigability of this data must be considered. Table 2 
lists the visualization and navigation features 
encountered in the inspected browsers. 
Most browsers implement some form of graphical 
tree browser, displaying the browser focus concept in 
the context of SNOMED’s multiaxial subsumption 
hierarchy. Some off-the-shelf tree controls, however, 
are unsuitable for displaying trees with very many 
levels and very many siblings at the same level, such 
as SNOMED CTs subsumption hierarchy. Those 
showing the hierarchy always exploded from the root 
node downward (e.g. the NCI Terminology Browser 
and Protégé) are particularly unwieldy; those that do 
not detect very large sibling sets before attempting to 
display them can lead to very long refresh times. 
Other visualization features observed include: sorting 
and grouping of components within concept 
definition or synonym sets, diacritic and superscript 
rendering, and typographic or colour coding of text. 
Most browsers employ web browsing paradigms for 
navigation, with use of hyperlinks to refocus the 
browser on arbitrary concepts, as well as 
back/forward navigation. Bookmarked ‘favourites’, 
or a ‘home’ concept, however, were rarely observed. 

Usability and Interoperability 
The overall experience of working with a browser is 
influenced by a range of more generic user interface 
features, listed inTable 2. These include: the ability to 
transiently or persistently configure a custom view on 
the wealth of SNOMED related information, e.g., to 
occupy less of the desktop real estate; copy-and-paste 
or drag-and-drop of selected information either within 
the browser environment or into external applications, 
and the availability of an API allowing browser 
interface components to be instantiated and controlled 
by 3rd party software (a functionality distinct from the 
notion of a terminology services API per se). 

Searching 
Table 3 lists the range of features observed by which 
SNOMED CT is searched against a user-entered text 
string in order to identify candidate SNOMED 
ConceptIDs as possible entry points for subsequent 
visualization and navigation. These different search 
features observed may be further analysed into:  
• lexical expansion of the original user search string 

in order to increase recall  
• semantic or metadata filtering of the set of 

candidate concepts returned by a query, in order 
to increase precision 

• collation and sorting of filtered results, so that the 
user may find (or be certain of not finding) the 
required concept 

In general, SNOMED CT searching functionality in 
most browsers is impoverished and idiosyncratic. 
Although 37 different query expansion, filtering and 

collation features were observed across all browsers, 
thirteen of the browsers implemented less than 10 of 
them - and rarely the same set. 27 searching features 
were implemented in less than a third of all browsers 
inspected, of which 5 were unique to one browser. 
Browsers differ in which features are on by default, 
which must be explicitly specified, and which can be, 
or by default are, combined in Boolean combinations. 
Not all strip trailing spaces; some default to an exact 
string match whilst others assume wildcarding unless 
specifically overridden. Where a search expression 
contains multiple words or tokens, few browsers 
support complex query logics such as requiring some 
tokens to be present and others not. 
To demonstrate the effect of these differences, all 
browsers were used in their default configuration to 
search against the same string: ‘ear catheter’. Six 
browsers found no matches. A further six found only 
72683003 Removal of catheter from middle ear, and its 
two descendants. SNOB returned eleven matches, 
including 72683003 but also 232199004 Inflation of 
Eustachian tube using balloon. The latter has no directly 
associated descriptions containing either ‘ear’ or 
‘catheter’ but instead is returned because it has at 
least one ancestor with at least one description 
matching ‘ear’, and a separate ancestor with a 
description matching ‘catheter’. The UMLS RRF 
Browser returned sixty-six matches. 

Postcoordination and Miscellaneous 
Unlike traditional clinical terminologies, SNOMED 
CT can be ‘postcoordinated’ - dynamically extended 
by anybody, subject to certain ontological rules. Most 
trivially, this manifests as the option to qualify 
anatomical sites by a Laterality attribute and 
Sidedness value. Exposing SNOMED CT only as a 
static corpus significantly diminishes its expressivity. 
Further, a large part of the content – e.g. all Qualifier, 
and Linkage Concepts - is easily misunderstood 
outside the context of postcoordination. 
The rules governing postcoordination are complex 
but compliance with them is a prerequisite for 
dynamic classification of the expressions so built. A 
dedicated postcoordinated expression building and 
validating interface is therefore highly desirable, but 
we found only five browsers that implement one. 
Three of these additionally implement some limited 
part of the rules and conventions. However, although 
compliance with the rules has limited value outside 
the context of dynamic classification, no browser 
inspected currently provides that function. 
SNOMED CT contains many content errors and 
omissions. Empowering end users to log and report 
content errors offers a ‘social computing’ route to 
expand SNOMED CT’s quality assurance capacity. 
However, only one inspected browser directly 
integrates content bug logging and reporting. 
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DISCUSSION 

Accessing data vs. browsing. In seeking to review 
‘browser’ technologies, we excluded command line 
or other direct SQL interfaces on the data tables. 
Although most browsers hide the raw data tables from 
the user, at least one explicitly provides a route to it. 
Whether ‘display’ of data by this route should pass or 
fail our core data theme tests is debatable. 
Configurability. A minority of the features identified 
are orthogonal or graded values of one property. For 
example, whether a given hierarchy browser sorts 
sibling concepts randomly, alphabetically by 
description, or numerically by ConceptID are 
orthogonal values of a ‘sibling sort’ function. 
Although in theory it is possible to imagine a browser 
configurable to any one of the three, individual 
hierarchy display instances can only implement one at 
a point in time. In practice, all inspected browsers 
implement only one of these options throughout. 
Operational test criteria. Differences between the 
browsers, particularly their default treatment of 
search strings, confounded attempts to specify tests 
that would work equally across all of them. Many of 
the tests specified in Tables 1-3 must be interpreted to 
take account of issues such as whether exact or 
wildcard string matching is assumed. 
Absence of standard search features. The observed 
differences in text-to-concept search implementations 
have a striking effect on browsing experience. Further 
work to characterize this phenomenon is required. 
Future work. We are currently validating the testing 
of specific browsers against the catalog of features. 
The quantitative results reported here are preliminary 
but confirm the authors’ original motivation for the 
experiment: currently available SNOMED CT 
browsers are very different and often suboptimal. 
We do not propose that all SNOMED CT browsers 
must always implement all the features we identify; 
further research is required to determine which 
features are required for specific use cases, but the 
prior existence of a master feature catalog such as we 
present here is a prerequisite for that research. Many 
of the features seem likely to be common across use 
cases, particularly text-to-concept search operations. 
We recommend that a core set of searching and 
browsing features be defined and harmonized across 
tools, so that a standard terminology is not 
transformed into multiple different objects by virtue 
of idiosyncratic and limited browsing experiences. 
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Table 3: Searching, Postcoordination and Miscellaneous browsing features
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Objective: The objective of this study is to compare 

two large biomedical terminologies, SNOMED CT 

and the National Cancer Institute (NCI) Thesaurus, 

through Semantic Web technologies. Methods: The 

two terminologies are converted into the Resource 

Description Framework (RDF) and loaded into a 

common triple store. The Unified Medical Language 

System (UMLS) is used to identify correspondences 

between concepts across terminologies. Concepts 

common to both terminologies are compared based 

on shared relations to other concepts. Results: A

total of 20,369 pairs of equivalent SNOMED CT and 

NCI Thesaurus concepts were identified through the 

UMLS. The highest proportion of shared relata is for 

the superclasses traversed recursively (75% of the 

concepts share at least one superclass). Slightly more 

than half of the concepts studied share at least one 

associative relation (direct relation or inherited from 

some ancestor). Conclusions: Overall, SNOMED CT 

and NCI Thesaurus concepts exhibit a relatively 

small proportion of shared relata. Semantic Web 

technologies, including RDF and triple stores, are 

suitable for comparing large biomedical ontologies, 

at least from a quantitative perspective. 

INTRODUCTION

In the era of translational medicine, i.e., the applica-
tion of the discoveries of basic research (made at the 
bench) to clinical medicine (the patient’s bedside) 
and the refinement of research hypotheses based on 
clinical findings, basic researchers and healthcare 
practitioners need to exchange information back and 
forth. In order to be processed efficiently, both re-
search data and clinical data must be annotated to 
some reference terminology or ontology. Although 
some research ontologies and clinical ontologies have 
a significant degree of overlap, there has typically 
been little coordination between the groups develop-
ing them. As a consequence, the definitions – textual 
or formal – provided in research ontologies and clini-
cal ontologies for the same biomedical entity may 
vary significantly, which constitutes a hindrance to 
the effective integration of data from basic research 
and clinical practice. 
The evaluation of biomedical terminologies for com-
pleteness and accuracy remains largely an open re-
search question. In this paper, we propose to compare 
two large biomedical ontologies developed for differ-

ent purposes: the NCI Thesaurus (NCIt), used for the 
annotation of cancer research data, and SNOMED 
CT, the largest clinical terminology used in electronic 
patient records. We take advantage of the fact that 
both ontologies were developed using Description 
Logic-based systems. Although most classes are not 
defined with a set of necessary and sufficient condi-
tions, the set of relations in which a given concept is 
involved still provides a formal definition for this 
concept, which can be used to compare it to other 
concepts. We also take advantage of the fact that both 
ontologies are represented in the Unified Medical 
Language System (UMLS), which asserts the equiva-
lence between concepts across biomedical ontologies. 
Finally, we exploit Semantic Web technologies, such 
as the Resource Description Framework (RDF) to 
carry out the comparison between these two ontolo-
gies. 
The objective of this study is to compare the formal 
definitions of SNOMED CT and NCIt concepts, 
using Semantic Web technologies. The assumption 
underlying this study is that two concepts, one from 
SNOMED CT and one from NCIt, when identified as 
equivalent in the UMLS, should have similar formal 
definitions. In other words, our hypothesis is that 
equivalent concepts from SNOMED CT and NCIt 
should have related concepts that are also equivalent. 
To our knowledge, this is the first study to compare 
biomedical ontologies on a large scale using RDF. 

BACKGROUND 

The general framework of this study is that of quality 
assurance in biomedical terminologies and ontolo-
gies, which is known to be is a difficult task [1]. Sev-
eral approaches to auditing terminologies have been 
proposed, including semantic methods [2], structural 
methods [3] and linguistic and formal ontological 
approaches [4]. Methods based on description logics 
have also been proposed, but have generally been 
restricted to subsets of large medical ontologies [5]. 
Various methods have been applied to SNOMED CT 
[3, 4] and to the NCIt [6]. In contrast to these ap-
proaches, we propose to evaluate SNOMED CT and 
the NCIt simultaneously and against each other. In 
other words, we want to cross-validate the definitions 
or assertions provided in one ontology for a given 
entity with the definitions or assertions provided in 
the other ontology for the same entity. 
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The Semantic Web provides a common framework 
that enables the integration, sharing and reuse of data 
from multiple sources. Recent research in Semantic 
Web technologies has delivered promising results to 
enable information integration across heterogeneous 
knowledge sources, particularly in the biomedical 
domain [7]. Semantic Web technologies are a collec-
tion of formalisms, languages and tools created to 
support the Semantic Web. Among them, the Re-
source Description Framework (RDF) is a W3C-
recommended framework for representing data in a 
common format that captures the logical structure of 
the data [8]. The RDF representational model uses a 
single schema in contrast to multiple heterogeneous 
schemas or Data Type Definitions (DTD) used to 
represent data in XML by different sources. In con-
junction with a single Uniform Resource Identifier 
(URI), all data represented in RDF form a single 
knowledge repository that may be queried as one 
knowledge resource. An RDF repository consists of a 
set of assertions or triples. Each triple comprises three 
entities namely, subject, predicate and object. A col-
lection of triples forms a graph and can be stored in a 
specialized database called a triple store. 

MATERIALS 

SNOMED CT 
SNOMED CT is a concept system and an associated 
terminology for healthcare [9].

.
 It is managed by the 

International Health Terminology Standards Devel-
opment Organisation (IHTSDO), a not-for-profit 
international standards body with nine member coun-
tries. Although its development is based on the De-
scription Logic system KRSS, SNOMED CT is pro-
vided as a set of relational tables corresponding to an 
“inferred view”, i.e., the set of non-redundant defin-
ing relations for each concept. The July 2007 interna-
tional release contains 310,311 active elements 
(309,175 concepts and 1,136 relationships, of which 
only 61 are actually used to relate concepts) and 
1,218,983 relations (pairs of semantically-related 
concepts). The source files for SNOMED CT 
(sct_concepts and sct_relationships) were down-
loaded from the UMLS Knowledge Source Server 
(http://umlsks.nlm.nih.gov/).

NCI Thesaurus 
The National Cancer Institute Thesaurus (NCIt) is a 
“terminology based on current science that helps 
individuals and software applications connect and 
organize the results of cancer research” [10]. The 
NCIt is produced by the National Cancer Institute, 
and is a key element of the cancer common ontologic 
representation environment (caCORE) [11]. The 
NCIt uses the description logic flavor of the Web 

Ontology Language (OWL-DL) for its representation 
[12]. Version 07.05e of the NCIt contains 58,869 
active classes, 123 associative relationships and 
124,775 relations (subsumption and equivalence 
relations, as well as restrictions in the OWL file). The 
OWL file for the NCIt was downloaded from the 
caCORE FTP site (ftp://ftp1.nci.nih.gov/pub/cacore/),
under EVS. 

Unified Medical Language System 
The Unified Medical Language System (UMLS) is a 
terminology integration system developed at the U.S. 
National Library of Medicine [13]. The UMLS Meta-
thesaurus is a repository of integrated biomedical 
terms drawn from 143 biomedical vocabularies and 
ontologies. Terms referring to the same entity in sev-
eral vocabularies are clustered together and given the 
same concept unique identifier (CUI). Both 
SNOMED CT (July 31, 2007) and NCIt (07.05e) are 
integrated in version 2007AC of the Metathesaurus, 
which provides a convenient way of identifying equi-
valences between terms from these two ontologies. 
The UMLS is available for download from the UMLS 
Knowledge Source Server (http://umlsks.nlm.nih.-
gov/). (A free license is required). 

METHODS 

The method developed for comparing concepts from 
SNOMED CT and NCIt can be summarized as fol-
lows. The formal definition of concepts is extracted 
from SNOMED CT and NCIt and converted to RDF 
triples. Equivalence relations between SNOMED CT 
and NCIt concepts are extracted from the UMLS . All 
triples are loaded into a triple store. Additional triples 
are generated from inference rules applied to the 
original knowledge base. The triple store is then que-
ried to compare the representation of concepts in 
SNOMED CT and NCIt. 

Acquiring RDF triples 
For each concept and relationship from SNOMED 
CT and NCIt, we extract the following information: 
original identifier, preferred name, source (SNOMED 
CT or NCIt), type (concept or relationship). RDF 
triples are created to represent this information, in 
which the subject is the concept itself. The predicates 
corresponding to the properties listed above are hasID,
hasName, hasSource and hasType, respectively. The 
object of these triples is a literal corresponding to, for 
example, the concept name for the predicate hasName.
Triples are also created for representing the relations 
of each concept to other concepts from the same 
source. The relationship indicated in the source is 
used as predicate for these triples, whose objects are 
concepts. Similarly, triples are created for 
representing relations among relationships (e.g., sub-
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PropertyOf). Finally, we create triples to represent the 
mapping of concepts to the UMLS Metathesaurus. 
For each concept from SNOMED CT and NCIt, we 
create one triple with the predicate hasCUI and the 
corresponding UMLS CUI as object literal. 

SNOMED CT. The fields ‘CONCEPTID’ and 
‘FULLYSPECIFIEDNAME’ from the table 
stc_concept were used to instantiate the properties 
hasID and hasName, respectively. All nodes were as-
signed the value ‘concept’ for the property hasType,
except for the elements of the table stc_concept ac-
tually corresponding to relationships, namely, Lin-

kage concept (linkage concept) and its descendants, 
to which the value ‘relationship’ was assigned. All 
nodes were assigned the value ‘SNOMEDCT’ for the 
property hasSource.

NCI Thesaurus. The elements ‘code’ and ‘Pre-
ferred_Name’ from the ‘<owl:Class>’ sections of the 
OWL file were used to instantiate the properties hasID
and hasName, respectively. All nodes were assigned 
the value ‘concept’ for the property hasType. Analo-
gously, information extracted from the 
‘<owl:ObjectProperty>’ sections of the OWL file was 
used to create the corresponding triples for properties 
(i.e., predicates). These nodes were assigned the 
value ‘relationship’ for the property hasType. All 
nodes were assigned the value ‘NCI’ for the property 
hasSource.

UMLS Metathesaurus. The table MRCONSO.RRF 
from the UMLS distribution was used for acquiring 
the mapping between terms from SNOMED CT and 
the UMLS concepts, as well as between terms from 
the NCIt and the UMLS concepts. We used the 
source abbreviation (SAB) to identify strings contri-
buted by SNOMED CT (SAB = ‘SNOMEDCT’) or 
NCTt (SAB = NCI). We extracted the concept iden-
tifier in the source (SCUI) and UMLS concept unique 
identifier (CUI) and created triples of the form (con-
cept, hasCUI, CUI) for each pair (SCUI, CUI). 

Creating the triple store 
These triples generated from SNOMED CT, NCIt 
and the UMLS were represented in N-triple format 
and loaded into the open source triple store Mulga-

ra™ (http://mulgara.org/) in a linux environment. 
Mulgara automatically indexes the triples, as well as 
the subject, predicate and object elements of each 
triple. 

Inference rules 
Inference rules are typically added to a triple store in 
order to infer new RDF statements (i.e., triples) from 
existing RDF statements. Mulgara provides a series 
of rules, which implement RDF Schema (RDFS) 
entailment, including rules for the transitivity of the 
relationships rdfs:subClassOf and rdfs:subPropertyOf. We 
found the set of rules for RDFS impractical to use on 

this triple store and ended up not using it. (The lack 
of generalized transitive closure in the triple store was 
compensated for by graph traversal functions in the 
queries.) 
In practice, the only rule we created and applied to 
the store makes a concept from SNOMED CT 
equivalent to a concept from NCIt when both con-
cepts are mapped to the same UMLS concept (i.e., 
share the same UMLS CUI). This relation was im-
plemented by creating an owl:sameAs relationship be-
tween the two concepts, bidirectionally. 
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SNOMED CT NCI Thesaurus
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sr4 sr5
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nr3

nr4

nr2

Equivalent concepts according to the UMLS

Relationship between 2 concepts

Shared relata of S and N

Figure 1. Graph formed by the related concept of one 
pair of equivalent concepts (S0, N0)

Querying the triple store 
A set of queries was developed to explore the relata 
of those concepts that are equivalent between 
SNOMED CT and NCIt according to the UMLS. 
More specifically, these queries explore the set of 
relata of the SNOMED CT concept and that of the 
NCIt concept, and select from the two sets the relata 
identified as equivalent in the UMLS. For example, 
as illustrated in Figure 1, the concepts S0 from 
SNOMED CT and N0 from NCIt are equivalent ac-
cording to the UMLS. Among the relata of S0 (S1 to 
S5) and N0 (N1 to N4), the pairs {S1, N1} and {S5, N3}
denote equivalent concepts and constitute the set of 
shared relata of {S0, N0}.
Each relation between two concepts (e.g., (S0, sr4,
S4)) is represented as a triple in the RDF store and the 
set of all relations forms a graph. Comparing the set 
of relata of two concepts can thus be expressed as a 
set of constraints on the graph. For example, {S1, N1}
are shared relata of {S0, N0}, because there is a path 
between S0 and N0, constituted of any link from S0 to 
S1, any link from N0 to N1, and a “UMLS equiva-
lence” link between S1 and N1.
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The set of relata is not necessarily limited to direct 
relata. Some relations can be traversed recursively in 
order to explore, for example, the set of common 
ancestors (as opposed to common direct subclasses). 
Depending on the constraints put on the graph, vari-
ous kinds of relationships can be explored, together 
or independently. 
One of the major query languages for RDF stores is 
SPARQL. Mulgara currently provides no support for 
SPARQL. Instead, it provides iTQL

TM
 (Interactive 

Tucana Query Language
TM

), which is functionally 
equivalent to SPARQL for most purposes. 

select $n_sub $n_rel $n_obj $s_sub $s_rel $s_obj
from <rmi://localhost/server1#nci_snomed_full>
where
(

# ---------- NCIT side ----------
walk(<ncit:C2986> <rdfs:subClassOf> $n_obj

and $n_sub_tmp <rdfs:subClassOf> $n_obj)
and $n_rel <mulgara:is> <rdfs:subClassOf>
and $n_sub <mulgara:is> <ncit:C2986>

)
and
(

# ---------- SNCT side ----------
walk(<snct:46635009> <snct:116680003> $s_obj

and $s_sub_tmp <snct:116680003> $s_obj)
and $s_rel <mulgara:is> <snct:116680003>
and $s_sub <mulgara:is> <snct:46635009>

)
and $n_obj <owl:sameAs> $s_obj
in <rmi://localhost/server1#nci_snomed_full_ent_sameAs>
;

Figure 2. iTQLquery used to explore the common su-
perclasses of the concepts C2986 from NCIt and 

46635009 from SNOMED CT 

[ ncit:C2986, rdfs:subClassOf, ncit:C2991, snct:46635009, snct:116680003, snct:64572001 ]

[ ncit:C2986, rdfs:subClassOf, ncit:C3009, snct:46635009, snct:116680003, snct:362969004 ]

[ ncit:C2986, rdfs:subClassOf, ncit:C2985, snct:46635009, snct:116680003, snct:73211009 ]

[ ncit:C2986, rdfs:subClassOf, ncit:C27067, snct:46635009, snct:116680003, snct:17346000 ]

[ ncit:C2986, rdfs:subClassOf, ncit:C53655, snct:46635009, snct:116680003, snct:126877002 ]

[ ncit:C2986, rdfs:subClassOf, ncit:C2990, snct:46635009, snct:116680003, snct:53619000 ]

[ ncit:C2986, rdfs:subClassOf, ncit:C26842, snct:46635009, snct:116680003, snct:3855007 ]

Figure 3. Results of the query in Figure 2 (aliases are 
used in lieu of the full URIs) 

Comparing the shared relata of concepts 
In order to compare the formal definitions of a con-
cept S0 from SNOMED CT and N0 from NCIt, we 
prepared queries to explore the following sets of 
shared relata: all shared relata (including through 
associative relations), shared superclasses, shared 
wholes (of which the entity is a part of), shared sub-
classes and shared parts. More precisely, these kinds 
of relations were first explored directly to extract the 
set of relata in direct relation to the original concepts, 
and indirectly, allowing the recursive traversal of isa
and part_of relationships. Finally, in order to account 
for the inheritance of properties from a superclass to 
its subclasses, we also explored the concepts in asso-
ciative relation to any of the superclasses of the origi-
nal concepts. 

In practice, starting from the list of pairs of equivalent 
concepts, we generated one query per pair for each 
type of relationship to be explored. The relata in 
common were recorded for each pair of equivalent 
concepts for each type of relationship explored. Fig-
ure 2 shows a typical query used to explore (recur-
sively) the common superclasses of two concepts. 
Figure 3 displays the output of this query, showing 
the 7 ancestors in common. 

Data analysis 
We analyzed the lists of shared relata resulting from 
the queries from a quantitative perspective, in order 
to examine the distribution of the number of common 
relata for the various kinds of relationships under 
investigation.  

RESULTS

Triple store 
A total of 3,194,215 triples were created, 2,770,477 
for SNOMED CT and 423,738 for NCIt. It took 
about 20 minutes to load these N-triples into Mulga-

ra, including the creation of indexes. 
The rule asserting the equivalence of SNOMED CT 
and NCIt concepts when they share the same UMLS 
CUI generated 40,738 additional triples (representing 
the owl:sameAs relations bidirectionally). It took about 
5 minutes to apply this rule to the triple store. 
Queries were executed in batches, one batch for each 
set of equivalent concepts for a given kind of rela-
tionship. Executing a batch of queries took anywhere 
between several minutes (for direct relations) to sev-
eral hours (when relations are allowed to be traversed 
recursively). 

Overlap between SNOMED CT and NCIt con-
cepts 
Of the 309,175 SNOMED CT concepts, 19,506 
(6.3%) mapped to the same UMLS concept as some 
NCIt concept. Analogously, 14,054 (23.9%) of the 
58,869 NCIT concepts mapped to the same UMLS 
concept as some SNOMED CT concept. A total of 
20,369 pairs of SNOMED CT and NCIt concepts 
were identified in which the two concepts are deemed 
equivalent based on their mapping to the UMLS. 

Quantitative results 
The distribution of the number of relata for several 
types of relationships investigated is summarized in 
Table 1. The first column (N) shows the total number 
of pairs of concepts for which both concepts have at 
least one related concept for this relation. This num-
ber is used as the denominator for computing the 
percentage of pairs of equivalent concepts having a 
given number of related concepts in common. The 
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minimum, maximum and median number of shared 
relata are presented in the last three columns. For 
example, the row “Dir. Superclass” corresponds to 
the shared direct parent classes (traversing isa in 
SNOMED CT and subClassOf in NCIt). N = 20,360 
indicates that almost all concepts have at least one 
ancestor. 18.4% of the pairs of equivalent concepts 
studied share a parent class and only 1.3% share two. 
Over 80% of the pairs do not share any direct parents. 
The row “Ind. Superclass” corresponds to the shared 
ancestors (traversing isa or subClassOf recursively). 
Only 25% of the pairs of equivalent concepts studied 
do not have any ancestors in common. The largest 
number of ancestors in common is 22. 
Details about shared relata for other kinds of relation-
ships are provided in the other rows of Table 1, in-
cluding direct parent and child classes for the tax-
onomic relation (super/subclass) and for the mero-
nomic relation (whole/part). The identification of 
indirect relata involves the recursive traversal of 
taxonomic and meronomic relations and combination 
of sucblassOf and associative relations. 

EXTENDED EXAMPLE 

In order to illustrate our approach to comparing on-
tologies, we explore how Type 1 diabetes mellitus is
represented in SNOMED CT and NCIt. As shown in 
Figure 4, this concept has many relata both in 
SNOMED CT and in NCIt, of which a large number 
are shared, including 7 shared ancestors (e.g., Dis-

order of pancreas) and 4 shared concepts in associa-
tive relation (e.g., Gastrointestinal System). Dotted 
lines represent indirect isa relations through concepts 
that are not shown. The equivalence between con-
cepts in SNOMED CT and NCIt assessed through the 
UMLS is shown with grey links. Of note, two distinct 
concepts in one ontology can be equivalent to one 
concept in the other (e.g., Endocrine Pancreas and 
Islet of Langerhans in NCIt vs. Endocrine pancreatic 

structure in SNOMED CT). 

DISCUSSION

SNOMED CT and NCIt 
Overall, the two ontologies under investigation in this 
study were found to have a relatively small proportion 
of relata in common, including when the properties 
(e.g., associative relations) are explored in the ances-
tors to simulate the inheritance of properties along isa
hierarchies. The highest proportion of shared relata is 
for the superclasses traversed recursively (75% of the 
concepts share at least one superclass). Slightly more 
than half of the concepts studied share at least one 
associative relation (direct relation or inherited from 
some ancestor). 

Further research is needed to distinguish among pri-
mitive concepts in both ontologies (e.g., Aneurismal 

bone cyst), concepts for which a relatively rich de-
scription is provided, but only in one ontology (e.g., 
the description provided for many cancers in NCIt is 
typically richer than in SNOMED CT), and concepts 
defined in both ontologies, but with minimal overlap 
in their relata. We did not complete the comparison 
of shared descendants, but, even in the absence of a 
rich description, a large proportion of shared descen-
dants can be a good indicator of consistency between 
ontologies (e.g., Sulfonamide agents share 18 des-
cendants). 

Semantic Web technologies 
We found RDF to be suitable for comparing termino-
logical ontologies, especially when the two ontologies 
are large and are not both available in OWL. While 
OWL classifiers are useful for consistency checking 
purposes, they tend to be limited in the number of 
classes they can handle. Moreover, the queries pre-
sented in this study arguably allow more flexibility 
than OWL DL classifiers. 
The triple store approach also offers clear advantages 
over relational databases, as SQL provides no support 
for performing transitive closures (i.e., for performing 
joint operations recursively). While ad hoc programs 
(or stored procedures) embedding SQL queries can 
be written against the database, we showed that sim-
ple queries against the RDF store were sufficient to 
carry out this study. Because it supports the seamless 
traversal of complex graphs (recursive traversal of 
one relationship and traversal of selected combina-
tions of relationships), RDF is an effective approach 
to comparing terminologies. 
The comparison of large ontologies remains nonethe-
less difficult. The inference engine of Mulgara could 
not apply the set of rules defined for RDFS, including 
the transitivity of subClassOf to large, heavily hierar-
chical structures. However, the graph traversal func-
tions supported by the query language partially com-
pensated for the absence of precomputed transitive 
closures. 

Limitations and future work 
This approach essentially provides a quantitative 
comparison between two ontologies and is insuffi-
cient for fine-grained comparisons. Although we did 
not study whether pairs of related concepts in both 
ontologies were linked by similar relations, the in-
formation could be easily extracted from the triple 
store. We also would like to test the structural consis-
tency of the combined ontologies (e.g., by testing the 
presence of cycles in isa relations in the RDF store 
containing both SNOMED CT and NCIt). The advan-
tage of using the UMLS perspective on concept equi-
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valence outweighs the potential bias it introduces 
with its “concept view”. 
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Ind. 
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Figure 4. Representation of Type 1 diabetes mellitus in SNOMED CT and NCIt, showing shared relata for ancestors and 
associative relationships
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ABSTRACT

This paper describes the findings of an exploratory 

study on reverse mapping of ICD-10-CA, the 

Canadian Adaptation, to SNOMED CT. For this 

study a set of 5,000 most frequent ICD-10-CA codes 

from the health ministry of a Canadian province was 

used. The methods included applying six mapping 

algorithms to each ICD-10-CA description to find the 

matching SNOMED CT concepts, and comparing the 

output against the UK SCT-ICD10 cross map for 

accuracy. Overall, we found successful SNOMED CT 

matches for ~63% of the ICD-10-CA codes. Issues 

requiring further attention include ways to increase 

successful matches and independent validation of 

mapping output. This study provides a glimpse of the 

methods that could lead to a SNOMED CT to ICD-

10-CA cross map. It should be of interest to those 

responsible for secondary use of discharge abstracts 

in epidemiological and statistical reporting. 

INTRODUCTION

The Systematized Nomenclature of Medicine Clinical 
Terms (SNOMED CT) is a terminology system used 
to capture information relating to a patient’s 
condition and care in a consistent manner. Currently, 
there are ~376000 concepts in SNOMED CT, 
organized into 19 hierarchies such as clinical finding, 
observations, body structure and social context. 
There  are another ~1 million commonly used terms 
to describe these concepts, and ~1.4 million semantic 
relationships to define the logical connections 
between concepts [1]. 

While SNOMED CT is the terminology of choice for 
capturing details of a clinical encounter, it is 
considered too fine grained for non-clinical purposes 
such as the reporting of resource use and billing. 
Many have advocated the need to link SNOMED CT 
to established classification systems, such as the 
International Statistical Classification of Diseases 
and Related Health Problems Version 10 (ICD-10), 
that are already used extensively in statistical 
reporting [2,3]. Currently there is a cross map from 
SNOMED CT to ICD-10 in the UK, and one to ICD-
9-CM (Clinical Modification) in the United States. 
Neither of these maps have been validated externally, 
and no map exists for ICD-10-CA, the Canadian 
Adaptation. There are other cross maps that have 

been created for specific domains including the 
SNOMED-to-ICD-O map for oncology, the 
SNOMED-to-LOINC map for laboratory test results, 
and those for nursing terminologies. Otherwise there 
is limited experience in cross mapping from 
SNOMED CT to existing classification systems to 
facilitate secondary uses. 

In this paper, we describe the initial findings of an 
exploratory study to create a reverse map from ICD-
10-CA to SNOMED CT. It originated as part of a 
Master of Science project by the lead author. We 
contend that reverse mapping could be one way to 
produce the SNOMED CT to ICD-10-CA cross map. 
This paper describes the mapping algorithms and 
process used, the key results on matches found, and 
the lessons and implications from the study.  

METHODS

Overview of ICD-10-CA 
The ICD-10-CA is an enhanced version of the ICD-
10 published by the World Health Organization 
(WHO). The ICD-10-CA has 23 chapters and is used 
for classifying morbidity, diseases, injuries and 
causes of death in Canada. It also covers non-disease 
situations and conditions that pose a risk to health 
including occupational and environmental factors, 
lifestyle and psycho-social circumstances. The ICD-
10-CA has an alphanumeric coding format of 3-6 
characters. The major difference between ICD-10 
and ICD-10-CA is that the latter has two additional 
chapters: XXII on morphology of neoplasms and 
XXIII on provisional codes for research and 
temporary assignment. There are also minor changes 
in some chapters in the form of addition, subdivision, 
deletion and revision of selected ICD codes [4]. 

Source Mapping Terms
For this study, we obtained a set of 5,000 most 
frequently reported ICD-10-CA codes and their long 
descriptions for the fiscal year of 2005/06 from the 
health ministry of a Canadian province. These source 
mapping terms were from inpatient separations in 
acute care settings including designated sub-acute 
care facilities for patients that require more care and 
time before returning home. The profile of the 
discharge abstracts for the 5,000 ICD-10-CA codes 
selected for the study is in Table 1. 
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Description Count
Total separations 2005/06 in province 364,977 

Total diagnosis codes reported 1,481,285 

Average no. of codes reported per separation 4.1 

Total discrete diagnosis codes (all) 10,529 

Frequency of top 5,000 diagnosis codes 1,460,730 

% of total diagnosis in top 5000 codes 98.6% 

% of total discrete diagnosis in top 5000 codes 47.5% 

Total discrete most responsible diagnosis codes 6,651 

Table 1. Profile of the Discharge Abstracts 

Mapping Algorithms 
After conducting a detailed review of the literature 
on cross mapping of terminology systems, we 
adopted five related mapping algorithms and created 
Web-based versions of these algorithms in to find 
matching SNOMED concepts for each of the ICD-
10-CA descriptions in the data set [5]. Four of the 
algorithms are lexical techniques for exact-match, 
match-all-words-only, match-all-words and partial-
match. The fifth is semantic matching that involves 
retrieving the current concepts based on entries in the 
SNOMED historical relationship table if the initial 
concepts found are inactive. These mapping 
algorithms are summarized in Table 2. 

Algorithm  Explanation 
1. Exact match Exact string match where all words are 

same and in same sequence for both source 
and target terms, including punctuation 

2. Match all only String match where all words are same but 
not necessary in same order; additional 
words not allowed in target term 

3. Match all  String match where all words are same but 
not necessary in same order; additional 
words allowed in target term 

4. Partial match String match where one or more words in 
source term is found in target term 

5. Semantic match For inactive concepts found use historical 
relationships of Was-A Same-As, May-Be-
A, Replaced-By to find current concepts 

6. Unmappable Assigned when no match is found 

Table 2. Mapping algorithms used in this study 

Normalization Steps 
In addition to using the original SNOMED CT terms 
and the ICD-10-CA long descriptions in mapping, we 
normalized all of these original terms to remove 
“noise” such as genitives and spelling errors using 
the Unified Medical Language System (UMLS) 
normalization steps, as shown in Table 3a [6]. To 
improve successful mapping, we expanded step-2 to 
remove both “stop words” and “exclude words,” as 
well as SNOMED prefixes, shown in Table 3b. For 
step-5 we included both the lookup and stemming 
methods to uninflect the phrase. The lookup method 
uses the UMLS SPECIALIST Lexicon’s inflection 
table with ~1 million entries, whereas the stemming 
method uses the computational technique first 

published by Porter Stemming that reduces word 
variants to a single canonical form [7,8]. 

Steps 1 to 6 Example 
Remove genitive Hodgkin’s disease, NOS  Hodgkin 

diseases, NOS 

Remove stop words Hodgkin diseases, NOS  Hodgkin 
diseases,

Convert to lowercase Hodgkin diseases,  hodgkin diseases, 

Strip punctuation hodgkin diseases,  hodgkin diseases 

Uninflect phrase hodgkin diseases  hodgkin disease 

Sort words hodgkin disease  disease hodgkin 

Table 3a. UMLS six normalization steps[7, slide 20] 

Step-2 Explanation 
Stop
words

Frequent short words that do not affect the phrase: 
and, by, for, in, of, on, the, to, with, no, and (nos) 

Exclude 
words

Words that may change meaning of the word but if 
ignored help to locate a term otherwise missed: 
about, alongside, an, anything, around, as, at, 
because, before, being, both, cannot, chronically, 
consists, covered, does, during, every, find, from, 
instead, into, more, must, no, not, only, or, properly, 
side, sided, some, something, specific, than, that, 
things, this, throughout, up, using, usually, when, 
while, without 

SNOMED
Prefixes 

[X] – concepts with ICD-10 codes not in ICD-9 
[D] –  concepts in ICD-9 XVI and ICD-10 SVII 
[M] – morphology of neoplasm concepts in ICD-O 
[SO] – concepts in OPCS-4 chapter Z in CTV3 
[Q] – temporary qualifying terms from CTV3 
[V] – concepts in ICD-9 and ICD-10 on factors 
influencing health status and contact with health 
services (V-codes and Z-codes) 

Table 3b. Expanded UMLS normalization step-2 

Reverse Mapping Process 
The reverse mapping of ICD-10-CA terms to 
SNOMED CT concepts involved cycling through the 
mapping algorithms one at a time to find the best 
candidate SNOMED CT concepts as the target terms. 
For each algorithm we always started with the 
original terms, then the UMLS normalized terms, 
followed by the stemmed terms. In each cycle, we 
would review the candidate concepts found to see if 
it was a match, and if so, what type of match it was 
based on the algorithm applied. When no matching 
concepts were found, we would label the term as 
unmappable. Our experience with the matching 
techniques was that, the sooner we could find a 
match in the cycle, i.e. first-match, the greater 
confidence we would have that the candidate concept 
is appropriate. The preferred order of matched terms 
was always exact-match first, match-all-only, then 
match-all, with partial-match last. Whenever inactive 
concepts were found a semantic-match was done to 
find the current concepts through their historical 
relationships. During mapping we tallied frequency 
statistics on the different types of matches with 
summary/detailed outputs. Only the first-matches 
were counted to determine the effectiveness of each 
mapping algorithm. 
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Comparison with UK SCT-ICD10 Map 
To determine the accuracy of the mapping results 
from this study, we compared our output with the UK 
SNOMED CT to ICD-10 (SCT-ICD10) cross map. 
To do so, the 5,000 ICD-10-CA codes were matched 
with the TargetCodes of the SCT_CrossMapTargets

table from the July 2007 version of the IHTSDO 
distribution set [1]. While the UK cross map is from 
SNOMED CT to ICD-10 and not ICD-10-CA, the 
two ICD versions share many similar codes. Thus, if 
the ICD-10-CA code was found among the 
TargetCodes of the UK map, we would look up the 
SCT_CrossMaps table to find the corresponding 
SNOMED concepts. If multiple similar SNOMED 
concepts were found, they would be filtered to 
include only the unique SNOMED concepts. Each of 
the concepts found were then compared with our 
mapping output from matches found by the exact-
match, match-all-only and match-all algorithms. 

RESULTS

Summary of Mapping Output
Of the 5,000 ICD-10-CA descriptions used in this 
study, we were able to match 1,619 source ICD terms 
(32.38%) to 2,625 target SNOMED concepts by the 
exact-match technique. Next, we matched 63 ICD 
terms (1.26%) to 87 SNOMED concepts by match-
all-only; another 1,478 ICD terms to 4,829 concepts 
by match-all; and 1,839 ICD terms to ~25 million 
concepts by partial-match. One ICD term C8800

Waldenstr was umappable. A summary of the 
mapping output by match-type is shown in Table 4.  

Match Type Source Target Percentage
Exact match 1,619 2,625 32.38% 

Match all only 63 87 1.26% 

Match all  1,478 4,829 29.56% 

Partial match 1,839 24,950,238 36.78% 

Unmappable 1 0 0.02% 

Total 5,000 24,957,779 100.00% 
Table 4. Summary of Mapping Output  

Detailed Analysis of Mapping Output
Each ICD term was cycled through all the matching 
techniques to determine the number of candidate 
target SNOMED concepts found for each match type. 
The first-match reported for each match type 
excluded the target concepts already identified in 
previous iterations to avoid duplicate counting. We 
tracked not only the total matches but also which 
technique found the first match. The output produced 
suggested exact-match, match-all-only and match-all 
could be considered as successful matches, since they 
returned one or more identical or similar SNOMED 

concepts based on the ICD term provided. The 
number of first-matches found for these match types 
by ICD Chapter are shown in the Appendix. One can 
see that the percentages of matches were very low for 
Chapters IV Endocrine, nutritional and metabolic 

diseases at 36%; XIII Diseases of the musculoskeletal 

system and connective tissue at ~36%; and XV

Pregnancy, childbirth and the puerperium at ~4%. 
Of the overall 3,160 ICD terms or ~63% that were 
mapped to one or more SNOMED concepts, most 
were found by exact-match and match-all during the 
first-match. The profiles of first-matches found by 
each match type are briefly described below. 

Exact Match – Table 5 shows 1,237 original ICD 
terms had exact-matches with 2,064 candidate 
concepts. Another 364 ICD terms had exact-matches 
with 527 concepts using the UMLS normalized 
version, and 18 ICD with 34 concepts using the 
stemmed version. In all, 2,625 candidate SNOMED 
concepts were found, which means that there were 
multiple exact matches for some of the ICD terms. 

Exact Match First Match Target
Original Term 1,237 2,064 

UMLS Version 364 527

Stemmed Version 18 34

Total 1,619 2,625 
Table 5. Exact match output 

Match All Only – Table 6 shows 33 original ICD 
terms had match-all-only with 48 candidate concepts; 
29 UMLS normalized terms had 37 concepts, and 1 
stemmed term had 2 only. In all, 87 candidate 
SNOMED concepts were found, which means that 
there were multiple match-all-only for some terms. 

Match All Words Only First Match Target
Original Term 33 48

UMLS Version 29 37

Stemmed Version 1 2

Total 63 87
Table 6. Match all only output 

Match All Words – Table 7 shows 1,343 original 
ICD terms had match-all with 4,558 candidate 
concepts; 114 UMLS normalized terms had 217 
concepts, and 21 stemmed terms had 54. In all, 4,829 
SNOMED concepts were found, which means that 
there were multiple match-all for some terms. 

Match All Words First Match Target
Original Term 1,343 4,558 

UMLS Version 114 217

Stemmed Version 21 54

Total 1,478 4,829 
Table 7. Match all words output 
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Partial Match – Table 8 shows 1,839 ICD terms had 
partial-matches with 25 million SNOMED concepts. 
We found the results of partial matches to be more 
unpredictable than the previous match types. If a 
source term was long and contains common words 
such as disorder or procedure, the results returned 
could be numerous as only one word from the source 
term needed to be present in the target term. 

Partial Match First Match Target
Original Term 1,839 24,950,238 

UMLS Version 0 0

Stemmed Version 0 0

Total 1,839 24,950,238 
Table 8. Partial match output 

Comparison with SCT-ICD10 Map 
Six comparisons were made between our mapping 
output and the UK map to see if: (a) both contained 
the same results; (b) both contained similar results; 
(c) both contained dissimilar results; (d) only UK 
map contained the results; (e) only our mapping 
output contained the results; (f) both had unmappable 
results. The overall results are shown in Table 9. 
Only (b), (c) and (f) are illustrated in this paper. 

Type of comparison Frequency Percentage
Contained exactly same results 11 0.22% 

Contained similar results 2,401 48.02% 

Contained dissimilar results 122 2.44% 

UK map with results only 896 17.92% 

Mapping outputs with results only 370 7.40% 

Both had unmappable results 1,200 24.00% 

Total 5,000 100.00% 
Table 9. Comparing UK map and mapping outputs 

Similar Results - Where both maps contained 
similar results, the UK map usually had more mapped 
terms than our output, as shown in Table 10. An 
example is with the ICD term Q61.2 Polycystic

kidney, autosomal dominant where the UK map had 
six SNOMED concepts but only four in ours. 

Description Total
UK map had more results than mapping outputs 2,125 

Mapping outputs had more results than UK map 224

UK and mapping outputs had same no. of results 63

Total 2,401 
ConceptId Fully Specified Name UK CA
66091009 Congenital disease (disorder) 

204955006 Polycystic kidney disease 

204962002 Multicystic kidney (disorder) 

28728008 Polycystic kidney disease, adult 
type (disorder) 

253878003 Adult type polycystic kidney 
disease type I (disorder) 

253879006 Adult type polycystic kidney 
disease type II (disorder) 

274567009 [EDTA] Polycystic kidneys, adult 
type (dominant) associated with 
renal failure (disorder) 

Table 10. Comparing both with similar results 

Dissimilar Results – Where both had dissimilar 
results, our output were more specific as each 
concept must contain all the words in the source 
term. For 100 (82%) of these terms the UK map had 
more candidate concepts; for 9 terms (7.4%) both had 
same number of concepts; whereas for 13 (10.7%) 
our mapping output had more concepts. An example 
is the ICD term S597 Multiple injuries of forearm,
shown in Table 11, where both maps had four 
concepts but none are similar. 

ConceptId Fully Specified Name UK CA
122549002 Injury (disorder) 

125596004 Injury of elbow (disorder) 

210557006 Severe multi tissue damage lower 
arm (disorder) 

210558001 Massive multi tissue damage 
lower arm (disorder) 

210860005 Injury of multiple blood vessels at 
forearm level (disorder) 

211290004 Multiple superficial injuries of 
forearm (disorder) 

212308001 Injury of multiple nerves at 
forearm level (disorder) 

212464002 Injury of multiple muscles and 
tendons at forearm level 
(disorder) 

Table 11. Comparing both with dissimilar results 

Unmappable Results – These were in almost every 
ICD chapter but most notable in XVII: Congenital 

malformations, deformations and chromosomal 

abnormalities; XIX: Injury, poisoning and certain 

other consequences of external causes; and XIII: 

Diseases of the musculoskeletal system and 

connective issue (Table 12). It is possible these ICD 
terms have further refinement making it difficult to 
find concept and lexical matches. An example is the 
ICD-10-CA term O2450 Pre-existing Type 1 diabetes 

mellitus arising in pregnancy, which could be refined 
as: delivered with or without antepartum condition 

(1), delivered with postpartum complication (2), or 

antepartum condition or complication (3).

Chapter Range Freq %
XVII: Congenital 
malformations, deformations, 
and chromosomal abnormalities 

Q00-Q99 292 24.33% 

XIX: Injury, poisoning and 
certain other consequences of 
external causes 

S00-T98 278 23.17% 

XIII: Disease of the 
musculoskeletal system and 
connective tissue 

M00-M99 207 17.25% 

IV: Endocrine, nutritional and 
metabolic diseases 

E00-E90 119 9.92% 

XX: External causes of 
morbidity and mortality 

V01-Y98 60 5.00% 

956 79.67% 

Table 12. Unmappable ICD-10-CA terms 
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DISCUSSION

Lessons and Issues 
This study was our initial effort to apply a set of 
mapping algorithms on a set of ICD-10-CA terms to 
find the matching target SNOMED concepts. Our 
output showed most of the matches were found using 
the exact-match and match-all algorithms. The 
match-all-words-only algorithm did not add a great 
deal to the number of matches found, and the partial-
match was considered too unpredictable with respect 
to the candidate target concepts returned. Due to 
space limitation, we did not report on additional 
matches found after normalization with UMLS and 
stemming techniques were applied to the original 
ICD terms, or those found by semantic matching.  

A major issue is how one should define “successful 
match.” In our output we had just over 60% of the 
matches found by exact-match and match-all, which 
we reviewed and deemed correct. However, more 
formal validation preferably by an independent 
source is needed. While our results showed 
successful matches in only ~63% of the 5,000 ICD-
10-CA codes, we were surprised to find the UK cross 
map had similar successful matches of ~68% against 
the same 5,000 ICD-10-CA codes (see Table 9). 
Equally intriguing were the different matches found 
between the two maps. Almost 50% of the concepts 
found were similar but not identical, whereas ~20% 
were dissimilar or found only in the UK map. One 
possible explanation is the minor differences that 
exist between ICD-10 and ICD-10-CA with respect 
to the addition, subdivision, deletion and revision 
made in some ICD-10-CA chapters. Another is that a 
concept-based method was used to create the UK 
cross map, which seemed to outperform the lexical 
techniques in this study. One possible solution to 
improve mapping precision is to combine methods, 
such as the use of semantic and lexical mapping 
between SNOMED CT and ICD-9-CM by Fung.9

Another issue is the extent that our semi-automated 
matching algorithms can aide in the cross-mapping 
process by health records staff when encoding the 
inpatient discharge abstracts. The current abstracting 
process is mostly an intellectual and manual exercise. 
As such, explicit cross-mapping guidelines need to 
be established, including the use of any computer-
based mapping tools, to improve this abstracting 
process. With our mapping algorithms, a consensus-
based process is needed for the health record staff to 
verify the accuracy of the ~63% successful matches. 
Guidelines are also needed to reconcile the remaining 
~37% partially-matched terms.2,10

Still, we contend there is merit in exploring the use of 
reverse mapping with lexical algorithms to identify 
candidate SNOMED concepts for a given set of ICD-
10-CA terms. Our next steps are to enhance the 
mapping algorithms to include contexts, incorporate 
these algorithms into the abstracting process, and 
conduct further field evaluation. Last, the idea of 
applying reverse mapping to identify candidate 
SNOMED CT concepts for a set of mapping terms 
can be a helpful approach when creating a cross map 
from SNOMED CT to another terminology system.  

Implications 
This study provides a glimpse of the feasible 
mapping methods that could eventually lead to a 
SNOMED CT to ICD-10-CA cross map for Canada. 
We believe the intent, methods and results of this 
current study should be of interest to those 
responsible for secondary use of patient discharge 
abstracts in epidemiological and statistical reporting. 
The notion of reverse mapping is also highly 
generalizable to include the encoding of local terms 
that already exist in legacy systems within many 
health organizations to a reference terminology such 
as SNOMED CT. 
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Appendix. Mapping Output for top 5,000 ICD-10-CA codes by ICD Chapter 

Chapter Title Range Source Exact Only All Total Percent

I Certain infections and parasitic disease A00-B99 136 47 2 57 106 77.94%

II Neoplasms C00-D48 343 174 58 232 67.64%

III Diseases of the blood and blood-forming organs and certain disorders 
involving the immune mechanism

D50-D89 80 35 1 20 56 70.00%

IV Endocrine, nutritional and metabolic diseases E00-E90 225 56 1 24 81 36.00%

V Mental and behavioural disorders F00-F99 218 66 3 141 210 96.33%

VI Diseases of the nervous system G00-G99 196 75 1 56 132 67.35%

VII Diseases of the eye and adnexa H00-H59 89 56 3 18 77 86.52%

VIII Diseases of the ear and mastoid process H60-H95 42 24 11 35 83.33%

IX Diseases of the circulatory system I00-I99 279 136 1 74 211 75.63%

X Diseases of the respiratory system J00-J99 165 67 4 41 112 67.88%

XI Diseases of the digestive system K00-K93 276 136 9 56 201 72.83%

XII Diseases of the skin and subcutaneous tissue L00-L99 105 42 20 62 59.05%

XIII Diseases of the musculoskeletal system and connective tissue M00-M99 383 78 1 61 140 36.55%

XIV Diseases of the genitourinary system N00-N99 226 120 3 48 171 75.66%

XV Pregnancy, childbirth and the puerperium O00-O99 313 5 1 6 12 3.83%

XVI Certain conditions originating in the perinatal period P00-P99 169 57 17 47 121 71.60%

XVII Congenital malformations, deformations, chromosomal abnormalities Q00-Q99 205 105 2 57 164 80.00%

XVIII Symptoms, signs and abnormal clinical and laboratory findings not 
elsewhere classified

R00-R99 181 99 2 52 153 84.53%

XIX Injury, poisoning and certain other consequences of external causes S00-T98 691 175 8 169 352 50.94%

XX External causes of morbidity and mortality V01-Y98 297 9 4 249 262 88.22%

XXI Factors influencing health status and contact with health services Z00-Z99 333 29 199 228 68.47%

XXII Morphology of neoplasms 8000/0-
9989/1

28 28 28 100.00%

XXIII Provisional codes for research and temporary assignment U00-U99* 20 14 14 70.00%

Total 5,000 1,619 63 1,478 3,160 63.20%
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Abstract

Work in the field of recording standard, coded data in electronic health records and 

messages is important to support interoperability of clinical systems. It is also 

important for reducing medical errors caused by misinterpretation and 

misrepresentation of data. Standardisation of structured and unstructured data to one 

or more terminologies such as SNOMED-CT, or ICD requires the help of various 

integration procedures. We have previously highlighted issues in data models 

(openEHR Archetypes) when mapping to a terminology model (SNOMED CT) [1]. In 

this paper, we describe issues with terminology models (SNOMED CT) when 

aligning the concepts to a data model (openEHR Archetypes).

Terminologies and data models play an important role in building structured EHRs 

and achieving semantic interoperability. Semantic interoperability requires that all 

recorded data conforms to some reference terminology in order to interpret and reuse 

it uniformly in all partaking information systems. In the medical domain, 

standardising data is of great significance, as controlling the vocabulary used to 

record patient data is critical to making EHRs safe for exchange and reuse.

The paper recognises the value of SNOMED CT but demonstrates the difficulties of 

working with it at an integration level. The difficulties in integration arise primarily 

due to the semantic gaps in the content of the structured data models and terminology 

models. The same issues might also arise with data obtained from unstructured 

sources. Despite the broad coverage that SNOMED offers, there are several concepts 

that are missing. An efficient process for submission of concepts for inclusion is in 

need, along with formal rules for post coordination.

We believe that in order to achieve the overall objective of semantic interoperability, 

it is imperative that both data and terminology models are developed with the aim of 

being able to integrate their clinical content. It is important that both modeling 

communities are not only cognizant of each others existence but also work closely 

with each other to ensure that conformance is built into the systems from conception 

stage. These conformance or compatibility rules should be extended to all other stages 

of the modeling process i.e. at design time, data integration time, as well as at run-

time. It is only then that true interoperability will be achieved, making it possible to 

build safer health care systems. Reliable and high quality data in these systems will 

improve the functioning of all health care units heavily dependent on data, reducing 

medical errors and ultimately providing safer and better patient care.

Reference
[1] Rahil Qamar, Jay Kola, and Alan Rector. Unambiguous data modeling to ensure 

higher accuracy term binding to clinical terminologies. AMIA 2007 Annual 

Symposium, November 2007. Chicago, U.S.A.
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ABSTRACT 
SNOMED CT (SCT) has been designed and 

implemented in an era when health computer 

systems generally required terminology 

representations in the form of singular pre- 

coordinated concepts. Consequently, much of SCT 

content represents pre-coordinated concepts and 

their relationships. In this conceptual paper the 

role of pre- and post-coordinated terminology 

expressions are considered in the context of the 

current development direction of Electronic Health 

Records and the use of communications 

and knowledge repositories. The move from 

current SCT structures to an implementation 

form of SCT that focuses on “atomic concepts” 

will support post-coordination and terminology 

binding to information models. This core or 

“essential” SNOMED CT - called SNOMED 

Essential Terminology (S-ET) -  would be 

smaller in terms of core concept numbers, 

simpler, easier to maintain and more intuitive 

for implementers. Our proposed 

implementation form of SNOMED CT would 

contain only “atomic concepts” with their 

attendant hierarchies and relationship data. These 

would be supported by a strict model for 

representing current  and future pre-coordinated 

concepts based on the use of an existing 

specific post- coordination expression, 

grammar, or representation. The resulting 

concept expressions would be post- 

coordinated from a smaller core of atomic 

components. Using definitional relationships, the 

proposed implementation form could equate 

existing pre-coordinated terms with post-

coordinated representations, allowing SCT to 

maintain links with legacy data. A strategy for 

testing and implementing this approach is 

discussed and empirical research and feasibility 

testing is recommended. 

INTRODUCTION 
SNOMED CT (SCT) is becoming the international 

standard clinical terminology with a new 

international licensing and governance process 

which makes it widely accessible. The adoption of 

SCT by multiple countries was influenced by many 

published studies demonstrating its comprehensive 

coverage [1-4] and advanced structural features. 

SNOMED CT has antecedents in the College of 

American Pathologists family of terminologies, the 

UK National Health Service Read Codes. As with 

any living language, it has absorbed content from a 

number of other terminologies and classifications. 

SCT contains concepts and terms that describe the 

“language of use” as well as concepts which define 

the “language of meaning”[5-7]. Consequently, SCT 

contains many pre-coordinated concepts that have 

varying levels of semantic complexity alongside the 

component or essential concepts which are 

themselves the building blocks of these complex 

clinical expressions. While there are sound 

historical and ongoing pragmatic reasons for this 

evolutionary development, the resulting mix of 

concept structures makes implementation within 

various information models complex and prone to 

variation. Currently, SCT is “cluttered” with pre-

coordinated terms that are incompletely defined by the 

internal information model that exists within SCT, 

making transformations between existing pre-

coordinated terms and post- coordinated 

representations difficult to achieve. This result 

limits opportunities for interoperability across 

systems, [8] which is one of the key objectives of a 

controlled terminology. 

This conceptual paper brings to notice issues that
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are well known within the health informatics 

community and proposes what may, at first glance, 

seem to be radical surgery. This proposal is in 

reality an extension and combination of existing 

features of SCT to create a more tractable solution 

to support both SCT development and the art and 

science of terminology development. This paper is 

not a report of a quantitative analysis of SCT 

structures or experimental results of the types of 

change proposed. These should come later, if the 

fundamental proposition is believed to be sound 

and a potential contribution to terminology 

development and maintenance methods. 

The computational representation of data is a 

combination of the use of information models 

and terminology. We propose a variation, 

restructure and extension of  the  cur ren t  

SNOMED-CT te rmino logy  to  suppor t  

implementation in various information models. 

Using a pragmatic approach the SCT would be 

altered in that existing pre-coordinated 

concepts would be identified, flagged and then 

defined through linkage to their atomic 

concepts and relationship types. The atomic or 

essential concepts would continue to be 

placed in logical and definitional hierarchies 

and relationship structures and subject to the 

use of description logic for definition, 

inference, and classification purposes. 

Existing pre-coordinated SCT concepts would 

retain their identifiers and be linked to the modified 

terminology as “pre-defined-post-coordinated 

concepts”, and would be logically equivalent to any 

post-coordination representing the same meaning. 

The retention of pre-coordinated concepts and the 

specification of their computational definitions 

would allow pre-coordinated terms to be used in 

interface applications, as pre-coordinated terms 

can be useful in helping data entry to be 

more consistent: supporting the language of 

use. If users have a retrieval list of pre- 

coordinated concepts that have post-coordinated 

equivalents, application developers can encourage 

users to use a more consistent post-coordinated 

form or to use entry terms that have relationships 

to post-coordinated expressions using fully-

defined atomic concepts.

This approach to the re-organization of SCT with 

the formal expression of the canonical form for 

pre-coordination is described as “SNOMED 

Essen t i a l  Terminology” (S-ET), or 

simply “Essential SNOMED”; the name 

coined by Dr. Walker when first describing 

this approach. This paper describes the case 

for change in SCT representation and advantages 

of moving to this representation, the 

background to the development of this 

approach, a representation model for pre-

coordinated concepts, and an implementation 

perspective. Simple examples have been selected, 

not to prove the feasibility of this approach, but to 

illustrate the principles. The need for a more 

technically challenging and quantitative approach 

to evaluation of this proposal is recognized and 

discussed.

TERMINOLOGIES AND INFORMATION 
MODELS

It is now widely accepted that health information 

storage is achieved through a combination of the 

use of controlled terminologies and standardized 

data models or architecture, yet the boundaries 

between the models used for terminology 

construction and health record construction are 

blurred. [9-12] The HL7 TermInfo project 

attempted to resolve this by providing guidance 

on how SNOMED CT could be used in HL7 

version 3 messages and data structures. [12-14] 

An example of this terminology model - 

information model interface is the question of 

whether concept negation should be managed 

within the terminology or within the data model. 

Should the negation be expressed as part of the 

terminological unit: “no history of breast cancer”, 

or as different components within an information 

model: “history of breast cancer” + “negative”?. 

[15] The semantics can be represented in the 

terminology as a pre or post coordinated concept or 

in a combination of the data model and 

terminology. The machinery to support this latter 

approach is contained in standard information 

models such as the HL7 Reference Information 

Model (RIM).[12] HL7’s TermInfo working group 

has recommended that when SNOMED is being 

used in HL7 V3 models, negation be managed in 

the terminology and that the model based approach 

to attaching a negation indicator be deprecated. 

This issue points to the need for sufficient 

flexibility in the management of post-coordination 

to allow for the transformation of concept 

structures and modifiers between the various 

options. The existence of other data and 

information models (e.g., CDISC) – which might 

develop and endorse their own guidance for use 

of complex terminologies such as SCT - 

suggest that standardization of SCT terminology 

use in HL7 (RIM-based) applications might not 

guarantee interoperability with applications 

using other information models. [16] 

While the issue of terminology and information 

model interaction is somewhat independent of the 

way that coordination of complex concepts occurs, 

there is a need for both pre and post-coordinated 

approaches to co-exist to fully support the spectrum 

of information representation. It is also recognized 

that equivalence between pre-coordinated and post- 

coordinated concepts has to be established to 
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maintain consistency in interpretation of 

terminology and between concept representation 

using different combinations of terminology and 

information model binding. In the current SCT 

infrastructure this is achieved using computation 

and testing the equivalence of the canonical form of 

the two terminological variations. This requires 

that all of the atomic or component concepts 

and pre- coordinated concepts are fully defined 

- not the case in practice. Having a formal 

definition explicitly developed for current and 

future pre- coordinated concepts within 

SNOMED would support the recognition of 

equivalence. [8, 17, 18] 

ISSUES WITH SNOMED-CT 
IMPLEMENTATION 

Several studies have shown that inter-rater 

reliability of SCT coding is poor, at least in part 

due to the complexity of the SCT structure and the 

inconsistency of existing content. [3, 19-21] This 

paper proposes that a simpler, more consistent 

representation of SCT will reduce confusion and 

improve the quality of SCT implementation. 

This would need to be tested once working 

subsets of the S-ET have been developed and so 

examine the impact on coding consistency of the 

interaction between the information model and 

the use of differently coordinated terminology. 

SCT size will certainly grow as new countries 

adopt it, especially when it becomes the 

terminology to support the many uses of coded 

clinical data, such as public heath. Trying to 

keep up with the need for language of use 

through definition of pre-coordinated concept 

phrases is a recipe for “combinatorial explosion” 

in the size of a terminology. This is bad enough 

in a terminology of simple structure, yet in one 

of SCTs complexity and richness of function, 

the impact is especially significant. A key 

technical challenge involves keeping the 

terminology to a manageable size and level of 

complexity so that it is both maintainable and 

supports end users’ applications. A second 

challenge for SCT maintenance is to allow 

compatibility with historical versions used by 

legacy applications while maintaining 

relevance as the core terminology resource 

for the current and future generations of health 

information systems.  The model proposed in 

this paper will support both of these 

objectives. 

BACKGROUND TO S-ET DEVELOPMENT 
In 1999 a combined pre and post-coordinated 

model for a medicines terminology was proposed 

by two of the authors (DW and PM) for 

Australia, based on an architecture designed 

earlier by DW for a proprietary drug information 

service. Both pre-coordinated concepts and their 

contained atomic components and relationship 

types were accommodated. The Essential 

SNOMED notion, which was initially 

canvassed informally within the health 

terminology community in 2001, was further 

developed following a comparative technical 

analysis of several terminology options that were 

then being investigated for use in Australian 

General Practice [23] and which subsequently 

recommended use of SCT leading in time to 

Australia becoming an early adopter of a national 

SCT license. A review of candidate 

terminologies at that time for use in General 

Practice examined several options. One terminology, 

DOCLE, was constructed of atomic concepts, 

joined by operators using a Bachus Naur Form 

(BNF), a standard system for representation of 

computable expressions using syntax or rules. 

[24] What was notable was the extensive use of 

pre-coordinated terms that were constructed from 

atomic elements. For example “cancer@breast” 

was a pre-coordinated concept for “breast cancer”, 

yet it is constructed using a post-coordination 

model of atomic concepts and the location operator 

.“@”. The process of normalization of DOCLE 

for inclusion in a terminology service found that 

a number of atomic concepts needed to be 

created to support existing content. Considering 

this approach and drawing on prior experience 

with the development of a medicines 

terminology requiring a full set of atomic 

elements which were combined to create fully 

defined pre-coordinated medicines concepts, 

it was postulated that the SCT terminology 

could be significantly simplified by creating a 

separate data structure for the pre-coordinated 

concepts where these were parsed and then 

described in a post- coordination grammar. [25] 

DESIGN OF ESSENTIAL SNOMED 
Essential SNOMED would contain a complete set 

of “atomic concepts” from which all other concepts 

could be constructed by post-coordination. These 

atomic concepts would be carefully crafted into 

their hierarchies and defined by their relationships. 

SNOMED CT most likely contains many - if 

not most - of these atomic concepts. They 

would consist of both primitive and fully 

defined concepts. The large number of pre-

coordinated concepts that are not in the above 

group should be “flagged” in the complete 

SNOMED CT data structure as “predefined-post-

coordinated equivalent concepts”, and eventually 

associated with their post-coordinated defining 

atomic concepts using a formal post 

coordination or compositional syntax as is 

already described. This group of pre- 

coordinated concepts would not rely on their 

hierarchical position or SNOMED relationships for 

their definition - instead they would be defined by 

the compositional expression (or formalism) used 

to construct their atomic post-coordinated concepts 
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(combination of existing atomic concepts), as 

described above. All the existing pre- 

coordinated concepts in SCT could remain, along 

with their identifier for use where the situation 

required this approach. Pre-coordinated concepts 

being added to SCT would also follow this pattern. 

For example, the pre-coordinated concept 

“Cellulitis of the left foot with osteomyelitis of the 

third metatarsal without lymphangitis” can be 

expressed using atomic concepts and relationship 

types, is shown in Table 1. The concepts and 

relationship concepts that comprise the definition 

would all be considered core Essential SNOMED 

content. 

Oper- 
ator 

Disorder Has- 
FindingSite 

Has-
Laterality 

Cellulitis Foot Left 

and Osteomyelitis third 

metatarsal 

Without  Lymphangitis 

Table 1 – Definitional relationships of an existing pre- 

coordinated SCT concept. 

The current SNOMED CT terminology model 

specifies relationships between concepts and terms, 

but does not make a distinction between post- 

coordinated concepts expressions and pre- 

coordinated concepts. We propose that this 

distinction be made explicitly, as a tool to assist in 

SNOMED-CT terminology maintenance and 

implementation. Figure 1 describes the way 

that the new architectural elements could be linked 

with existing S- CT structures which are 

represented by the  three elements placed at the 

right hand side of the figure. 

Figure 1 – Conceptual  terminology model for Essential 

SNOMED. 

DISCUSSION 

At the outset it is acknowledged that this 

proposal is grounded in the excellent overall 

design and management features of SCT. 

The advantages of this proposed structure for SCT 

are reduced size and complexity for ease of 

implementation and maintenance. An inevitable 

outcome would be a reduction in the 

combinatorial explosion that occurs when rampant 

pre-coordination of concepts and phrases occurs, 

yet this comes at the cost of introducing a new 

element in the post coordination expression that 

links the pre-coordinated concepts to their atomic 

elements. The core terminology concepts and 

hierarchies should be however much simplified.. 

The core of S-ET would grow some as new 

atomic concepts were added. The  S-ET structure 

would be expressively intuitive as its approach to 

concept representat ion would support  

concept  constructions. Hierarchical 

simplification would result as the definition of 

the many pre-coordinated-concepts would be 

independent of immediate hierarchies or 

relationships – S-ET would use the compositional 

expression to link with hierarchies and defining 

relationships of the atomic concepts. Existing 

approaches to canonical forms would continue and 

allow equivalence testing between different pre- 

coordinated concepts and post-coordinated 

expressions. Pre-coordinated concepts would still 

be able to be represented in a hierarchical 

arrangement to support inference and subsumption, 

however these could be calculated rather than 

explicit expressed as happens currently in SCT. In 

this model the hierarchical relationships would be 

inferred rather than the canonical form. 

Equating pre- and post-coordination may be easier, 

as the computational form is actually specified for 

concepts within SCT. It is acknowledged that the 

current approach in SNOMED is not 

comprehensive due to incomplete set of  canonical 

representations and possible lack of semantics to 

fully describe the meaning of existing 

semantically complex pre-coordinated concepts. 

Both the pre-coordinated form and the various 

representations of the post-coordinated concept 

are valid ways of describing the same concept. 

The first is more aligned with human 

interpretation and the second supports computer 

processing of the data. It is clear that both forms of 

concept representation are needed and both have to 

be supported by clinical terminologies such as 

SNOMED CT. The approach recommended in 

SNOMED Essen t ia l  Terminology is 

believed to be consistent with the current SCT 

approach to canonical form definition. 

This model is highly dependent upon an 

expressive and computable syntax for post-

coordination. The  process of moving to an S-ET 

distribution format will highlight any 

deficiencies in the current post-coordination 

methods and constraints as these will become 

explicit and subject to development. SNOMED –
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CT authors can continue to develop pre- 

coordinated expressions if required. End users, 

particularly those who rely on the use of pre- 

coordinated concepts, will have the capacity to add 

locally relevant pre-coordination through a minor 

modification of the SCT way of managing local 

extensions, and in doing so would not require 

frequent change submissions to the core essential 

SNOMED terminology. As discussed earlier an 

S-ET model, coupled with an improved model 

for managing pre-coordination will support the 

terminology user interface. 

One of the difficulties faced by SNOMED is the 

need to harmonize with widely used terminologies 

that are heavily structured on pre-coordination. 

LOINC and MEDCIN and most health 

classifications would be examples {28]. A 

SNOMED Essen t i a l  Terminology  would 

not need to include the pre- coordinated 

concepts imported from such 

terminologies, and could instead relate 

their concepts to SNOMED-CT by 

mapping which used the post-coordination 

syntax. Alternatively such pre-coordinated 

concepts could be placed along with 

existing SCT pre-coordinated content. The 

end result would provide the flexibility of 

incorporating or mapping to external 

terminologies, even though they may not 

share the same data models as SCT.  

It is recognized that there are situations where pre- 

coordination is more efficient from a computational 

perspective, as in the recognition of commonly 

used text strings in natural language processing 

(NLP) applications. SNOMED Essen t i a l  

Terminology will allow the further development 

of such concepts without undue concern about the 

combinatorial explosion that might otherwise 

exist. NLP requires the consistent application of 

terminology and parsing of text. If a SNOMED 

Essen t i a l  Terminology model is not adopted 

then it is likely that  some equivalent derivative 

product will be created by necessity by these key 

application areas. Having a standard form will 

support consistency of output of  different NLP 

applications. 

One of the current strategies to simplify 

SNOMED is to restructure the relationship between 

terminologies and classifications. Removing or 

retiring classification concepts from SCT will allow 

them to reside in their respective 

classifications and have linkage to the clinical 

terminology by mapping or other formal 

constructs. SNOMED Essen t i a l  

Terminology proposes making a similar change 

to manage both the historical terminological 

clutter resulting from SNOMED’s antecedents and 

use in legacy information systems. In addition it 

will meet the widely accepted need to continue to 

manage post-coordination in a modern 

terminology to support the computer-human 

interface.  

Making the transformation to S-ET 
The transformation to a SNOMED Essen t i a l  

Terminology  would require a set of suitable 

“relationship-types” and an appropriate post-

coordination representation form or “syntax” that 

catered for the “pre-defined-postcoordinated 

equivalent concepts”. SNOMED has published a 

BNF for this syntax. This syntax describes 

the core SCT concepts, and their 

relationships. An XML equivalent (in addition 

or as an alternative) may be helpful for the current 

computer engineering environment. This paper 

is not exploring the relative merits of these 

approaches; however the process of defining 

the post-coordination equivalents of existing 

concepts will also provide a validity check on the 

completeness of the syntax or post coordination 

model, and as such is complementary to activities 

of the International Health Terminology Standards 

Development Organisation’s (IHTSDO) Concept 

Model Special Interest Group. 

As the “pre-defined-post-coordinated concepts” 

could be related back to their atomic components 

(which are themselves part of the SNOMED 

hierarchy and relationship structure) it would no 

longer be necessary to separately define the 

hierarchies or associations for the pre-coordinated 

concepts within the terminology. This does not 

preclude such constructs being employed, much 

like current indexing activity at run-time. These 

hierarchies could be machine classified. For 

example, if the phrase “fractured ankle” was 

compiled from two concepts as follows: 

[problem, action or issue] = “fracture” 

[which has FindingSite] = “ankle” 

Consequently , if it was necessary to locate 

“injuries of the lower limb”, then the hierarchical 

ancestors of “fracture” would include “injuries” 

and those of “ankle” would include “lower limb”. 

The issue of what is and what isn’t an atomic or 

pre-coordinated concept is subject to debate and the 

boundaries can be fuzzy. Is headache a single 

concept or a post-coordinated ‘pain’ with 

‘location’ of ‘head’? Technically, it should 

not be part of an S-ET based on atomic 

concepts  but is it sufficiently common and 

semantically ‘simple’ enough to warrant 

inclusion? Under our proposal, “atoms refer 

to semantic units, not term labels or 

compound term labels. While it is clear that 

even single concepts can have compound names, it 

would be a conceptual error to consider  a concept 
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such as Hodgkin’s lymphoma to be a pre-

coordinated concept, whereas a “fractured right 

femur” is patently so.  

Building essential SNOMED will be 

necessarily a pragmatic exercise which can cope 

with one or other of these forms or both. The 

consequences of the fuzziness in determining 

whether an existing concept should be managed as 

a pre or post coordinated concepts are not 

expected to be significant. All are still included in 

SCT.

New pre-coordinated concepts could be created 

(if required by information systems or  

user  preference), although this temptation may 

best be resisted as it is expected that the 

requirements for pre-coordination would become 

less pressing with the introduction of standard 

information models (e.g., HL7 V3, archetypes or 

OpenEHR) and the advancement of Natural 

Language Processing (NLP) to support data 

entry.[26] Complex pre-coordinated concepts can 

sometimes be useful in encouraging consistency in 

representation where small nuances may be 

unintentionally instantiated where no difference in 

clinical meaning exists. For example: Colon 

cancer can be represented either as: Malignant 

Neoplasm - Has finding site – Colon; or as: 

Colon – HasSpecimen - Malignant Neoplasm. 

This ambiguity is undesirable, and the 

availability of pre-coordinated concept 

expressions at the interface level can prevent 

this type of variation, and set patterns for 

good practice in post- coordination within 

terminology services. 

The atomic-concepts included in S-ET would 

be those that are necessary and appropriate to build 

pre-coordinated concepts that currently exist, or 

may be added subsequently, as well as the atomic 

concepts currently in use. The boundaries around 

atomic concept definition are often fuzzy as 

discussed above. Editorial rules would be 

required to consider inclusion of concepts that are 

not “semantically atomic” but are very common. 

A pragmatic approach would need to be 

developed, and the following may suggest one 

strategy:

1. The entries expected to be found as 

defined concepts in a large medical 

dictionary [27]; this would likely include items 

that have a distinct clinical meaning and are 

used frequently – e.g. Lung cancer; breast 

cancer; direct inguinal hernia; chest pain. 

2. Those concepts that cannot be adequately 

defined by the composition of their post- 

coordinated concepts due perhaps to use of 

an uncommon or unsupported semantic type 

for the relationship between elements. 

As a result many of the pre-coordinated concepts 

found in SCT diagnoses, findings and procedures 

would be excluded from the atomic- concept list 

and be placed in the pre-coordinated group.  

It is clear that any change to the structure or 

representation forms of SCT may have an impact 

on reference set (subset) development, use within 

value-sets, and mapping to classifications and use in 

local extensions. These areas need to be further 

examined, however S-ET would not have a 

significant impact, as the current SCT and S-ET 

would contain the same concepts and 

relationships. There is a significant advantage for 

local extensions as local terminology experts could 

map new local concepts to atomic elements within 

SCT, hence gaining the benefits of 

classification and relationship modelling, 

without having to wait for formal inclusion in 

later releases. The development of reference sets 

based on concept and hierarchy selection would 

also include related pre-coordinated concepts. 

The feasibility of remodelling large sections of 

SNOMED CT, particularly when there are 

competing priorities for terminology development, 

must be assessed. While a conversion strategy has 

not been covered in detail, the re-organization could 

consider using current SCT relationships - but with 

some care because of their known limitations. The 

size of the term string, the number of individual 

words, the presence of relationships, and a 

comparison with lists of terms extracted from 

medical dictionaries might help identify potential 

pre-coordinated concepts. It  is possible 

that a functional result to create S-ET 

could result from flagging pre-

coordinated concepts and terms, without 

substantially altering the publication 

structure. As with most terminology 

development, specific tools to manage the 

transition to S-ET would need to be developed, 

refined and the end result would need 

appropriate checking and quality control 

processes and upfront attention to ongoing 

maintenance. 

While the first efforts at instantiation of the S-ET 

model may involve the restructure of arbitrary 

twigs and branches of the SNOMED hierarchical 

tree, an approach proposed would be to operate on 

concepts identified in large sub-setting exercises 

where terminology of use has been identified from 

analysis of actual clinical use in a specific domain 

such as intensive care [29] or general practice .[23]

CONCLUSION 
This paper has proposed a modest alteration to the 

structure of SNOMED CT so that it supports the 

co-existence of pre and post coordination in a form 

that advances the basic structure of what might be 

regarded as good terminology practice [30]. 
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The changes do not require any fundamental 

changes in SCT methods, but rather a structural 

extension and the incorporation of existing post- 

coordination methods of expression into the core 

terminology. 

This paper outlines a number of issues with the 

current SCT architecture and proposes a solution 

which is consistent with its current design and 

which may have a number of advantages. If the 

proposed model creates resonance with the end 

users of SNOMED CT, it should be exposed to 

empirical testing and considered by the IHTSDO 

and their related organizations. The authors hope 

this paper stimulates discussion and feedback. We 

look forward to formal testing of these ideas for 

feasibility and acceptance. 
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Abstract 
Objectives: We compared the effects of two semantic 

terminology models on classification of clinical notes 

through a study in the domain of heart murmur findings. 

Methods: One schema was established from the 

existing SNOMED CT model (S-Model) and the other 

was from a template model (T-Model) which uses base 

concepts and non-hierarchical relationships to 

characterize the murmurs. A corpus of clinical notes 

(n=309) was collected and annotated using the two 

schemas. The annotations were coded for a decision 

tree classifier for text classification task. The standard 

information retrieval measures of precision, recall, 

f-score and accuracy and the paired t-test were used for 

evaluation. Results: The performance of S-Model was 

better than the original T-Model (p<0.05 for recall and 

f-score). A revised T-Model by extending its structure 

and corresponding values performed better than 

S-Model (p<0.05 for recall and accuracy). Conclusion:

We discovered that content coverage is a more 

important factor than terminology model for 

classification; however a templatestyle facilitates 

content gap discovery and completion. 

Introduction 
While modern terminologies have advanced well 

beyond simple one-dimensional subsumption 

relationships through the introduction of composite 

expressions, there is an emerging convergence of 

approaches toward the use of a concept-based clinical 

terminology with an underlying formal semantic 

terminology model (STM) [1]. SNOMED CT, the most 

comprehensive clinically oriented medical terminology 

system, currently adopts a foundation based on a 

description logic (DL) model and the underlying 

DL-based structure to formally represent the meanings 

of concepts and the interrelationships between concepts 

[2-3]. The existing SNOMED CT model is mainly 

pre-coordination oriented, i.e. containing many 

pre-coordinated terms, and also supports 

post-coordination. For example, a compositional 

expression “[ hypophysectomy (52699005) ] + 

[ transfrontal approach (65519007) ]” could be used to 

describe a more specific clinical statement than that 

only using the term “hypophysectomy (52699005)”.  

For a specific domain, a template model having a 

semantic structure with a coherent class of terms can be 

used as a formal representation [4]. This kind of model 

is mainly post-coordination oriented and a list of 

atomic terms is organized within a semantic structure. 

For example, the latest version of the International 

Classification of Nursing Practice (ICNP) uses a 

7-Axis model to support the representation of nursing 

concepts and integrates the domain concepts of nursing 

in a manner suitable for computer processing [5].  

One of the main goals of the semantic terminology 

models is to support capturing structured clinical 

information that is crucial for computer programs such 

as information retrieval systems and decision support 

tools [6]. Structured recording has the potential to 

improve information retrieval from a patient database 

in response to clinically relevant questions [1]. 

However, functional difference in retrieval 

performance has not been clearly demonstrated 

between these two different semantic terminology 

models. 

In this study, we focus upon the specific domain of 

heart murmur findings. Two schemas were established 

from two different semantic terminology models for 

evaluation: one schema is extracted from the existing 

SNOMED CT model (S-Model) and the other is a 

template model (T-Model) extracted from a 

concept-dependent attributes model recently published 

by Green, et al [7]. The objectives of the study are to 

annotate the real clinical notes using the two schemas 

and to compare and evaluate the effects of two models 

on classification of the clinical notes.  

Methods and Materials 
Defining the annotation schemas 

We defined two schemas for both S-Model and 

T-Model and represented the two schemas in Protégé 

(version 3.2 beta), which is an ontology editing 

environment and was developed by Stanford Medical 

Informatics [8]. 

For the S-Model, we established a schema by 

extracting concept trees from the existing 

sub-hierarchy of heart murmur findings in January 

2006 version of SNOMED CT (see Fig. 1). One root 

concept is “Heart murmur (SCTID_88610006)” which 

includes 86 sub-concepts of pre-coordinated terms of 

heart murmur findings. The other root concept is 

“Anatomical concepts (SCTID_257728006)” which 

includes two parts relevant to our schema. One part is 

the concept “Cardiac internal structure 

(SCTID_277712000)” and its sup-concepts. The other 

part contains only those anatomical concepts appearing 

in our clinical notes corpus on the basis of a manual 

review. For all heart murmur concepts, two semantic 

attributes derive from SNOMED CT context model for 
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heart murmur findings that frame post-coordination. 

One is “procedure site” that represents the auscultation 

site of a heart murmur and the other is “finding site” 

that represents the potential etiological site of a heart 

murmur. The values of the former one were set as the 

instances of “anatomical concepts 

(SCTID_257728006)” and the values of the latter one 

were set as the instances of “Cardiac internal structure 

(SCTID_277712000)”. 

Fig. 1 Schema of SNOMED CT Model (S-Model) for heart murmur findings represented in Protégé

Fig. 2 Schema of Template Model (T-Model) for heart murmur findings represented in Protégé
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For the T-Model, a schema was established from a 

concept-dependent attributes model published in a 

recent paper of Green, et al [7]. In this schema (see Fig. 

2), one root concept is “heart murmur” which had eight 

semantic attributes, consisting of “has cardiac cycle 

timing”, “has murmur configuration”, “has murmur 

duration”, “has murmur intensity”, “has murmur pitch”, 

“has murmur quality”, “has point of maximum 

intensity”, “radiates towards”. The corresponding 

values of these eight attributes were set as the 

sub-concepts of the other root concept “cardiac 

murmur characteristic values”. We adopted the model 

attributes are directly from Green’s model, as well as 

their values (kindly provided by Green, interpersonal 

communication).  

Preparing clinical notes corpus 

The Mayo Clinic has a repository of approximately 

twenty million clinical notes that consist of documents 

dictated by physicians that are subsequently transcribed 

and filed as part of the patient’s electronic medical 

record. The following criteria were made to sample 

those notes. Firstly, we extracted notes with these 

criteria from Mayo repository in an automatic way: 1) 

created between January 1, 2005 to January 31, 2005; 

2) Having a heart murmur description in Physical 

Examination section; 3) age  21; 4) Having a Hospital 

International Classification of Disease Adaptation 

(HICDA) code of the Heart Valvular Disease, and 5) 

removing patients with a code for status prosthetic 

valve or complication of a prosthetic valve. Secondly, 

we flagged extracted documents containing a diagnosis 

of aortic stenosis (AS), yielding 103 documents. 

Thirdly, we randomly selected controls among the 

extracted documents having no diagnosis of AS by 

matching the following conditions: 1) no history of 

vavular surgeries; 2) matching gender and age within 1 

year for each case (see Table 1).  Two controls were 

retained for each case, totaling to 309 documents. 

Finally, we parsed out cardiac exam from the Physical 

Examination section of each document to create an 

annotation corpus. 

Table 1. Control documents selection by matching with 

gender and age 

Annotation software and Annotators 

A general purpose text annotation tool, Knowtator [9], 

was used to map text contents to our schema. 

Knowtator is a Java plug-in for Protégé and mainly 

used for creating gold-standard training and evaluation 

corpora for natural language processing (NLP) systems. 

The annotation schemas described in section above 

were instantiated in Knowtator. 

One author (GJ) performed the annotation task and 

then the other author (CGC) verified the annotations 

for 10% of all documents. Differences were mutually 

adjudicated and lessons generalized to the remaining 

90% of cases. 

Coding for machine learning classification 

We coded the annotated corpora for classification using 

a machine learning classification algorithm. The target 

category of the classification is binary, i.e. aortic 

stenosis (AS) or non-AS. In other words, the goal of 

the classification is to predict whether a document with 

a heart murmur description belongs to AS category or 

not. The annotations of each document were used as 

the predictive features and coded as binary.  

We used a Weka implementation of the decision tree 

(J4.8) [10], which is a well-known supervised approach 

to classification.  

Outcome measures and statistical analysis 

For the annotation task, we compared the description 

completeness between the two models. The annotators 

were asked to judge whether the heart murmur 

descriptions of each document could be described 

completely through using the schema of a model while 

they performed annotation task. If they judged a 

document as “incomplete”, they indicated a reason for 

the judgment. 

To evaluate the data retrieval task, we used the standard 

evaluation metrics of precision, recall, f-score and 

accuracy. Precision is defined as the ratio of correctly 

assigned AS category (true positive) to the total hit 

number (true positives and false positives). Recall is 

the ratio of correctly assigned AS category (true 

positive) to the number of target category in the test set 

(true positives and false negatives). The f-score 

represents the harmonic mean of precision and recall. 

Accuracy is the ratio of correctly assigned categories 

(true positives and true negatives) to total number of 

instances in test dataset. 

For S-Model, one dataset (SM) that contains the 

annotations of both heart murmurs and anatomical 

concepts was prepared. For T-Model, three datasets 

were prepared. The first one (TM1) is that contains the 

annotations from Green’s original model. The other 

two datasets are extension of TM1. We extended TM1 

to create TM2 by completing the values for all eight 

semantic attributes whenever a description appearing in 

the clinical notes corpus did not have a corresponding 

value in TM1. For example, we added “upper sternal 

border”, “mid sternal border” and “lower sternal 

Age Male Control Female Control Total
21-30 1 2 0 0 3 

31-40 0 0 0 0 0 

41-50 0 0 2 4 6 

51-60 4 8 0 0 12 

61-70 7 14 5 10 36 

71-80 26 52 7 14 99 

81-90 24 48 21 42 135 

91- 2 4 4 8 18 

Total 64 128 39 78 309 
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border” into the schema because they appeared 

frequently in our corpus to describe the auscultation 

areas and the original model only contains “sternal 

border”.

Building on TM2, we created our third model (TM3) 

by adding a new semantic attribute “has inferences to 

(specific murmurs or etiological mentions)” to the root 

concept “heart murmur” and also completing its 

corresponding values from those descriptions 

appearing in the corpus. We re-annotated all documents 

using the extended models respectively.  

Ten-fold cross validation for retrieval was performed 

10 separate times over all four datasets and the paired 

t-test was performed to test the statistical significance 

of performance measures between the dataset of 

S-Model and three datasets of T-Model. 

Results 
For annotations 

In S-Model, we made 995 annotations across all 309 

documents. The average number of annotations per 

document is 3.2. Among the annotations, 728 belonged 

to 33 different sub-concepts of heart murmur 

(88610006). Of the heart murmur annotations, 509 

(70.0%) had the values of the attribute “procedure site” 

filled and 6 (0.8%) had the values of the attribute 

“finding site” filled. 

In T-Model, we made 1377 annotations against the 

original T-Model (TM1). The average number of 

annotations per documents is 4.5. Among 335 discrete 

heart murmur annotations, 89.9% include timing, 

79.7% include intensity and 69.0% include points of 

maximum intensity (POMI). (see Fig.3)  

Fig. 3 The annotation distribution of the eight attributes 

for all 335 heart murmurs annotated in original 

T-Model. 
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For comparison, the average number of annotations per 

document in S-Model was less than those in T-Model, 

indicating that S-Model supports more abstract way for 

description of heart murmur findings than T-Model. 

Considering description completeness, 88 documents 

(28%) in S-Model were judged as “incomplete”; in the 

original T-Model, 201 documents (65%) were judged 

as “incomplete”. Thus, S-Model exhibits more 

complete domain coverage than the original T-Model. 

The reasons for the incompleteness of four datasets 

from two models were listed in Table 2. We found that 

S-Model (SM) could describe most of “auscultation 

area” and the original T-Model (TM1) could not. For 

“radiation”, both SM and TM1 could not describe it 

well (we noticed that for SM, it is due to lacking of 

semantic attribute for “Radiation”, whereas that in 

TM1 is due to lacking of appropriate values for 

“Radiation” attribute). In addition, SM could describe 

all “ejection murmur” mentions and part of “aortic 

valve related” etiological mentions; TM1 could not. 

The results indicated that the strict template model, per 

Green, assumes that observers are using strict 

descriptions, and not making inferences to specific 

murmurs and etiological mentions, whereas SNOMED 

CT model accommodates partly the variability in 

inferences and strict descriptions, by providing terms 

that covers both. 

Table 2 Frequency of reasons for the incompleteness of 

four datasets from two models

 SM TM1 TM2 TM3

Auscultation area 1 78 0 0

Radiation 47 47 0 0

Configuration 8 8 0 0

Quality 7 5 0 0

Specific murmurs 

Ejection murmur 0 107 107 0

Regurgitant murmur 3 3 3 0

Flow murmur 2 2 2 0

Etiological mentions 

Aortic valve related 19 25 25 0

Mitral valve related 4 4 4 0

Pulmonary valve related 1 1 1 0

Septal defect 1 1 1 0

For TM2 and TM3, zero values in Table 2 indicated our 

synthetic completion of the values of each 

corresponding attribute in T-Model. The description 

completeness of TM2 was corresponding up to 57.6%, 

and that of TM3 up to 100%. Table 3 provided the 

examples (a AS case vs. a Non-AS case) to show how 

annotations were taken for all four schemas from two 

models. 
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For classification 

As described in above section, four datasets (SM, TM1, 

TM2 and TM3) from two models were formed for 

evaluation. The results of the evaluation metrics of the 

four datasets were shown in Table 4. We found that the 

classification performance of SM was better than TM1 

(i.e. original Green’s model), with statistical 

significance identified for recall and f-score (p<0.05, 

paired t-test). We consider that the reason was probably 

that the TM1 did not contain a complete list of murmur 

characteristic values for many of its semantic 

attributes. 

The performance of TM2 was better than TM1, but still 

lesser than SM. The result indicates that the original 

T-Model using strict physical descriptions may not 

fully represent descriptions of heart murmur findings in 

clinical notes, negatively impacting functional 

performance. 

The classification performance of TM3 was the 

significantly best among the datasets (p<0.05, paired 

t-test vs. SM). The result provided further evidence that 

inferences to specific murmurs and etiological 

mentions were important part of descriptions of heart 

murmur findings in real clinical notes, influencing the 

functional performance of the terminology model in 

this specific domain.  

Table 3 The examples (AS Case vs. Non-AS Case) of annotations using four schemas 

  AS Case Non-AS Case 
Textual Note Heart: Loud 3 to 4/6 systolic ejection murmur heard best at 

the right upper sternal border. Absent of S2. 

Heart: Regular rate and rhythmwith a 2/6 left upper sternal 

border systolic regurgitant murmur. P2 was slightly increased. 

There was an S4 but no S3. The apical impulse was not 

localizable.

SM 
Annotation 

15157000:Cardiac murmur - intensity grade III (VI) 

  procedure site: [117144008:upper parasternal region]  

    laterality: [24028007:right] 

25311008:Cardiac murmur - intensity grade IV (VI) 

  procedure site: [117144008:upper parasternal region]  

    laterality: [24028007:right] 

77197001: Ejection murmur 

  procedure site: [117144008:upper parasternal region]  

    laterality: [24028007:right] 

36680007:Cardiac murmur - intensity grade II (VI) 

  procedure site: upper parasternal region 

    laterality: [7771000:left] 

31574009: Systolic murmur 

  procedure site: [117144008:upper parasternal region] 

    laterality: [7771000:left] 

TM1
Annotation 

Heart murmur: 

  has cardiac cycle timing value: systolic timing 

  has murmur intensity value: intensity grade III/VI 

  has murmur intensity value: intensity grade IV/VI 

has point of maximum intensity: sternal border (laterality: 

right)

Heart murmur: 

  has cardiac cycle timing value: systolic timing 

  has murmur intensity value: intensity grade II/VI 

  has point of maximum intensity: sternal border (laterality: left) 

TM2
Annotation 

Heart murmur: 

  has cardiac cycle timing value: systolic timing 

  has murmur intensity value: intensity grade III/VI 

  has murmur intensity value: intensity grade IV/VI 

  has point of maximum intensity: upper sternal border 

(laterality: right) 

 has murmur quality value: loud

Heart murmur: 

  has cardiac cycle timing value: systolic timing 

  has murmur intensity value: intensity grade II/VI 

  has point of maximum intensity: upper sternal border 

(laterality: left) 

TM3
Annotation 

Heart murmur: 

  has cardiac cycle timing value: systolic timing 

  has murmur intensity value: intensity grade III/VI 

  has murmur intensity value: intensity grade IV/VI 

  has point of maximum intensity: upper sternal border 

(laterality: right) 

  has murmur quality value: loud 

  has inferences to: ejection murmur 

Heart murmur: 

  has cardiac cycle timing value: systolic timing 

  has murmur intensity value: intensity grade II/VI 

  has point of maximum intensity: upper sternal border 

(laterality: left) 

  has inferences to: regurgitant murmur 
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Table 4 The results of the evaluation metrics of the four datasets 

Precision  Recall  F-score  Accuracy  

(mean±sd) (mean±sd) (mean±sd) (mean±sd) 

SM 74.2% ±13.7% 59.4% ±15.6% 64.5% ±12.7% 79.0% ±6.1% 

TM1 67.5% ±14.9% *44.6% ±13.8% *52.1% ±11.5% 73.6% ±5.4% 

TM2 71.0% ±14.0% 53.2% ±18.9% 59.0% ±15.3% 76.9% ±6.8% 

TM3 80.0% ±12.2% *69.8% ±14.6% 73.5% ±10.4% *83.6% ±5.8% 

*p< 0.05 (paired t-test) 

Discussions 
In this study, we developed an approach to compare 

and evaluate the domain coverage (indicated by the 

description completeness) of two semantic terminology 

models and their effects on the classification of real 

clinical notes. We found that the description 

completeness of the S-Model was better than the 

original T-Model with original value set, 

correspondingly the performance of the S-Model on 

classification was also better. The extensions of 

T-Model that improved the description completeness, 

did improve its performance on classification of 

clinical notes. We clearly demonstrated that the domain 

coverage of a terminology model was directly 

correlated with its performance on classification of 

clinical notes; this is not surprising. 

We could see that the effect of a terminology model on 

its functional performance in a specific domain mainly 

depends on its ability to represent the contents of the 

domain. In other words, the key issue for a terminology 

model is how to achieve complete domain coverage. If 

two different terminology models could represent the 

contents of a domain to achieve the same coverage, 

their performances on classification of clinical notes 

should have no difference.  

In original T-Model, the description of a hear murmur 

could be fully post-coordinated by a semantic structure 

of eight semantic attributes. With original value set, we 

found that its description completeness was 

sub-optimal. In the paper from which the model was 

derived [7], the authors stated that “to adequately 

capture the full spectrum of cardiac murmur 

descriptions, our model needed a complete list of 

murmur characteristics”. So our first extension (TM2) 

completes the term values for all eight attributes of the 

original T-Model. The description of completeness was 

increased from 35.0% to 57.6%. 

Thus, adding axes content to each attribute within the 

semantic structure did improve the domain coverage of 

the model; however, even with value completion, the 

original T-Model still could not achieve complete 

description for given corpus. 

Therefore, we consider that the domain coverage of a 

terminology model depends not only on the full value 

set of its semantic structure, but also on the coverage of 

the semantic structure itself. 

Our second extension (TM3) of the T-Model adds a 

semantic attribute together with its corresponding 

values. This did overcome the limitation of semantic 

structure of the original T-Model and achieves a 

complete description for given corpus. In other words, 

the extended structure allows a systematic examination 

of where content gaps exist (e.g. missing values of 

references to specific murmurs and etiological 

mentions) and also guides the “completion” of the 

terms or missing contents informed by the extended 

structure. 

In S-Model, most of its contents are pre-coordinated, 

with the post-coordination only possible for two 

semantic attributes “procedure site” and “finding site”. 

We did not extend the SNOMED CT model in a similar 

fashion since the model is an international standard 

although we believe that performance would be 

improved were it also extended. However, the 

extension of the model would be more complicated 

than that of template model because it involves both 

pre-coordination and post-coordination. We consider 

that the template model would be more applicable for 

achieving complete domain coverage. An important 

implication of these experiments is that a templatestyle 

terminology model more readily identifies gaps in 

coverage, and facilitates their completion for 

classification tasks.  

Knowtator was used as our annotation tool and 

satisfied our purpose well, demonstrating the following 

merits. The first merit is that Knowtator uses the 

Protégé ontology editing environment to build the 

annotation schema. The frame-based knowledge 

representation system provides a flexible and 

expressive way to efficiently make schemas of the two 

model types in this study. The second merit is that 

Knowtator provides visualization of annotations, 

making the annotation task and confirmation process 

simple and efficient. The third merit is that the Java 

API of the system, which supports the annotation query 

that exports our coding of annotations to a classifier 

format automatically. 

Representing and sharing knowledge using SNOMED
Proceedings of the 3rd international conference on Knowledge Representation in Medicine (KR-MED 2008)
R. Cornet, K.A. Spackman (Eds)

64



In order to improve the baseline performances on all 

standard evaluation measures, we performed control 

selection of clinical notes using strict criteria. This 

design did improve baseline performances (data not 

shown). 

We regard the evaluation in this study in its 

comparative context across models; absolute measures 

of precision and recall are subject to factors beyond the 

scope of this study. A limitation of this study is that the 

annotations of clinical notes depends entirely on what 

clinicians decide to document for each patient, who 

they may or may not know has AS at the time. The 

local culture around documentation seems possible that 

these findings could be different on another corpus. 

Second, we only collected a relatively small size of 

clinical notes corpus given that the intensive annotation 

tasks were required. We consider that the annotation 

corpus is valid as both authors have clinical medicine 

background. Ten-fold cross validation used in this 

study may facilitate the efficient use of the data and get 

the best liability estimate. This kind of annotation 

corpus may be used to train a machine learning based 

annotation algorithm to build an automatic domain 

specific annotation tool.  In addition, because it was 

not our intention to evaluate which classifier performed 

better, we only used a Weka implementation of the 

decision tree (J4.8) algorithm. 

In conclusion, the domain coverage of the two models 

and their performance on classification clearly differ 

when applied to real clinical notes. Our approach 

provides an effective framework to evaluate the 

coverage and functional performance of the semantic 

terminology models in a specific domain for potential 

improvement. Future direction would focus on the 

scalability of the approach and the evaluation of 

interoperability among the different semantic 

terminology models.  
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We seek to leverage enhanced expressivity in OWL 

1.1 via property chain axioms with right identities in 

order to organize and constrain anatomic concepts 

for use in clinical descriptions. Anatomic knowledge 

represented in SNOMED CT uses SEP triplets; we 

anticipate that property chains will allow a more 

parsimonious organization of anatomic concepts.   

However, these constructs may lead to unanticipated 

inference, especially when scaling to large numbers 

of concepts [1]. We used a bottom-up approach 

based on targeted use case questions to iteratively 

develop a “micro theory” that both identifies the 

sensible locations of fractures in long bones and also 

supports logic-based classification of fractures. 

Alternative representations of the statement

“fractures occur in bone” were explored with the 

aim of creating rich clinical descriptors that support 

classification for inference and data mining. The 

process of creating this micro theory is discussed, 

where pragmatic decisions were made with an 

intention of both constraining data entry and 

enabling inferences within the scope of the use cases. 

INTRODUCTION

OWL and other forms of description logics have been 
used extensively to model spatial relationships for 
anatomical knowledge [1-6]. The focus of these 
efforts has been either to investigate the 
computational properties of the description logic or to 
develop a generalized set of axioms or theories to 
support classification inferences for a wide variety of 
clinical decision support use cases. We seek to 
leverage the enhanced expressivity of OWL 1.1 [7] to 
organize anatomic concepts for use in creating
clinical descriptions. In particular, we explore the use 
of property chain axioms with right identities to 
simplify a knowledge base of anatomy without 
limiting the inferences that can be computed. It has 
previously been demonstrated that for anatomical 
descriptions, inferences after addition of these axioms 
can remain computationally tractable [3].  In contrast 
with other approaches, such as SEP triplets [2], we 
anticipate that property chains will allow a more 
parsimonious organization of anatomic concepts. The 
downside to using property chains and transitivity, 
however, are that these constructs may lead to 

unanticipated inference, especially when scaling to 
large numbers of concepts [1].  

For our initial investigation, we focused on a single
use case limited to fractures of long bones. We 
adopted an iterative bottom-up process to developing 
a “micro-theory”—an axiomitization that yields 
sensible and logically correct inference in a limited 
domain. At each stage, we tested the incremental 
theory against the use case scenario. We re-used
content from the Foundational Model of Anatomy
(FMA) [8]. The various distinctions introduced in the 
FMA to model partonomy, i.e., systemic-part-of, 
regional-part-of and constitutional-part-of were 
explored. We attempted to design a theory that was 
compact and understandable and also gave us the 
correct intended behavior. The model accounts for 
both anatomic perspectives and functional clinical 
perspectives. We tested the model by computing the 
appropriate inferences based on the use cases.

Locative transfer over pathophysiologic processes is a 
fundamental property for ontologies that will be used 
for clinical decision support or data warehousing 
applications.  Given the sheer number of anatomic 
concepts present in systems such as SNOMED CT, it 
is critical that modeling idioms yield predictable
results in order to scale.  An important goal of the 
current work is begin to understand the characteristics 
of these idioms in a limited domain.

Clinical Scenario and Use Case Questions
Typically, a physician creates a clinical descriptor 
that is of sufficient granularity to support a 
management plan—the clinical descriptor is an index 
for the general management plan for a given 
pathology.  Within the contemporary electronic health 
record, the clinical descriptor may be reused as data 
to drive point-of-care decision support, or as 
warehouse data to support reporting.  For instance, if 
we need to report the number of patients who had a 
fracture of the proximal femur, we should include the 
number of patients who had a fracture of the femoral 
neck.  In both cases, the original descriptor should 
support detailed classification schemes.
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With respect to bone fractures, it is desirable to 
describe fractures in detail with respect to the bone 
features involved—the clinical detail drives the 
management plan.  The clinical detail may describe 
either a fracture involving an anatomic landmark or a 
functional region where all fractures act similarly.  It 
is equally important that the clinical descriptor not 
admit any nonsensical description.  While fractures 
may involve bony landmarks, we generally do not 
describe fractures of the periosteum—the bone 
lining—or the bone marrow.  While these are parts of 
bones, they are not generally parts through which 
fractures are described to occur. The GALEN project 
used constraints called sanctions to specify the values 
that could sensibly be applied to relations such as 
has-location [6].  Similarly, we constructed our 
ontology fragment with the intent of logically 
defining the set of all and only locations for fractures.

Given a need to document, to classify, and possibly to 
obtain reference information, useful questions that 
might be posed include

†

1. What bone regions and features are contained in 
the Distal Epiphysis of the Femur?

2. What parts of the Distal Epiphysis of the 
Humerus are covered by Articular Cartilage?

3. Is a fracture of the Femoral Neck also a fracture 
of the Proximal Femur (i.e., is a fracture through 
an anatomic feature a fracture of a functional 
region)?

4. Is a fracture of the Trochlea a fracture of the 
Distal Epiphysis of the Humerus?

5. Is a fracture of the Trochlea an intra-articular 
fracture?

6. Is a fracture of the Trochlea an intra-articular 
fracture of the Distal Epiphysis of the Humerus?

MATERIALS

We looked at the following two sources for creating 
the fracture ontology: (a) The SNOMED CT 
hierarchies spanning the femur and the humerus; and 
(b) The FMA hierarchies corresponding to the femur 
and the humerus. A brief description of the portion of 
these two knowledge sources is described below.

SNOMED CT
SEP-triplets are extensively employed in the 
anatomical part of SNOMED CT. For each
SNOMED anatomical class representing one entire 
entity, called entity (or entire) class (E-class), there 
are two auxiliary classes, the structure class (S-class) 
and the part class (P-class). For example, in the femur

                                                          
† 1) The medial and lateral condyles of the Femur; 2) Trochlea and 
Capitellum; 3) Yes; 4) Yes; 5) Yes; 6) Yes.

hierarchy, we ideally would have the following 
classes defined:

StructureOfFemur
EntireFemur StructureOfFemur
FemurPart StructureOfFemur partOf.EntireFemur
BoneStructureOfDistalFemur FemurPart
EntireDistalFemur BoneStructureOfDistalFemur
DistalFemurPart BoneStructureOfDistalFemur       
                                   partOf.EntireDistalFemur
StructureOfDistalEpiphysisOfFemur DistalFemurPart
EntireDistalEpiphysisOfFemur 
                     StructureOfDistalEpiphysisOfFemur

The E-class is instantiated by entire anatomical 
objects (such as the entire femur), and the P-class by 
the proper parts of the referred objects (such as the 
distal femur). The S-class, finally, is instantiated by 
instances that are either entire objects or their parts. 
This definition explains the is-a links from the E-
class and the P-class to the S-class, as well as the 
partOf link from the P-class to the E-class. The main 
idea underlying the SEP-triplet approach is to 
represent a part-whole relationship between two 
entity classes not by a part-of link between the E-
classes, but rather by an is-a link between the S-class 
of the “part” and the P-class of the “whole”. This is, 
however, sufficient to simulate transitivity of part-of 
through the inherently transitive relation is-a: 

EntireDistalEpiphysisOfFemur 
StructureOfDistalEpiphysisOfFemur 
DistalFemurPart
BoneStructureOfDistalFemur
FemurPart
partOf.EntireFemur

This allows us to conclude that every Distal Epiphysis
of the Femur is part of some Femur. Since 
characteristics are inherited along the is-a hierarchy, 
the SEP-triplet encoding also allows us to simulate 
inheritance of characteristics along the part-of
hierarchy. In our example, by connecting a fracture 
via the findingSite property to the S-class, we can 
ensure that a fracture located in the Distal Epiphysis 
of the Femur is classified as a fracture located in the 
Femur. Another advantage of the SEP encoding is 
that one can suppress such inheritance along the part-
of hierarchy by connecting via findingSite to the E-
class.

There are, however, several problems with the SEP-
triplet encoding. First, from a formal ontological 
point of view, it partially conflates the is-a hierarchy
with the part-of hierarchy, which may lead to 
unintended consequences since the two relationships 
are completely different by nature [9]. In SNOMED, 
it has indeed turned out that is-a links can be 
ambiguous, i.e., it is not always clear whether they are 
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introduced as part of the SEP-triplet approach, or are 
supposed to represent a genuine generalization 
relationship. Second, the SEP-triplet approach is error
prone since it works correctly only if it is employed 
with a very strict modeling discipline. In SNOMED, 
triplets are often modeled in an incomplete way; in 
particular, the P-class and the part-of link to it from 
the E-class are missing in most cases. For example, 
the following axioms presented earlier were not 
actually asserted in SNOMED, but were included for 
pedagogical purposes (DistalFemurPart does not 
currently exist in SNOMED):

DistalFemurPart BoneStructureOfDistalFemur  
                              partOf.EntireDistalFemur
StructureOfDistalEpiphysisOfFemur DistalFemurPart

In addition, the auxiliary S-class is sometimes 
incorrectly used as if it were an entire entity class. 
Third, the approach introduces for every proper class 
in the ontology two auxiliary classes, which results in 
a significant increase in the ontology size.  Finally, 
the SEP approach makes it much more difficult to 
define and maintain the set of sensible locations for
fractures.

Foundational Model of Anatomy
The FMA ontology defines a set of partonomic 
relationships discussed in [10,11] for guiding the 
representation of anatomical parts. This is a smaller 
set than that used in GALEN [6], and thus one of the 
questions we seek to answer is whether it is sufficient 
for clinical modeling, Refinements of the generic 
part-whole relationships for anatomical structures are 
proposed, as anatomical structures have been 
decomposed based on several different contexts. A 
partition is defined as the decomposition of the entire 
body or any anatomical structure in a given context or 
viewpoint. 

A constitutional part is defined as a primary partition 
of an anatomical structure into its compositionally 
distinct anatomical elements. In the context of the 
whole, an element is any relatively simple component 
of which a larger, more complex anatomical structure 
is compounded; i.e., the partition is compositional
rather than spatial. For example, a stomach may be 
viewed as being partitioned into its wall and cavity. A 
regional part on the other hand is defined as a 
primary partition that spatially subdivides an 
anatomical structure into sets of diverse constitutional 
parts that share a given location within the whole; i.e., 
the partition is spatial rather than compositional. For 
example, a stomach may be viewed as being 
partitioned into its fundus, body and pyloric antrum to
name a few of such parts.  Constitutional parts are 
genetically determined, whereas regional parts are 

defined not only by genetically regulated
developmental processes (e.g., lobe of lung, cortex of 
kidney, finger), but also by arbitrary landmarks or 
coordinates, such as used for demarcating the thoracic 
and abdominal parts of the aorta and the fundus of the 
stomach from adjacent parts of the corresponding 
wholes. A systemic part is defined as a secondary 
partition of an anatomic structure in accord with 
functional systems. 

The distinction between regional parts determined by 
well defined genetically regulated processes and 
arbitrary landmarks and coordinates, is represented 
by associating the attributes anatomical or arbitrary

with regional parts. Furthermore, these attributes 
provide the basis for the different views of regional 
partitions, as in the case of the liver, where its 
traditional partition into lobes based on arbitrary

landmarks constitutes an arbitrary kind of regional 
view, while another partition based on the distribution 
of the tributaries of the hepatic veins or branches of 
the hepatic artery constitutes an anatomical regional
view. 

The FMA also supports topologic relationships 
supporting connectedness and containment.  
Connectedness describes whether structures are 
continuous with, attached to, or synapsed with other 
structures.  Containment deals exclusively with the 
containment of a material anatomic entity within an 
anatomic space, e.g., Right lung -contained in- Right 
half of thoracic cavity.  Connectedness and 
containment are orthogonal to regionality and 
constitutionality and do not confer parthood [12]. 

METHODS

We now present our approach to developing the long 
bone fracture ontology.  We draw on the FMA as a 
primary source of anatomic content.

Regional vs. Constitutional Partitions
As previously discussed, the FMA ontology draws a 
distinction between a regional partition and a 
constitutional partition.   We reviewed this content to 
determine whether it was suitable for reuse within our 
ontology fragment.

1. The regional partition of long bones is 
exemplified by the following regional parts of the 
Femur (regPartOf):

ProximalEpiphysisOfFemur regPartOf.Femur
DiaphysisOfFemur regPartOf.Femur
DistalEpiphysisOfFemur regPartOf.Femur
FemoralNeckOfFemur
regPartOf.ProximalEndOfFemur
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Regional parts of the femur include true anatomic 
parts (epiphyses, diaphysis) as well as functional parts
defined by fiat boundaries (proximal end of femur), 
illustrating the FMA’s anatomic and arbitrary types.

2. The constitutional partition of long bones is 
exemplified by the following constitutional parts 
of the Femur (constPartOf):

BonyPartOfFemur
BoneOfFemur
PeriosterumOfFemur 

MedullaryCavityOfFemur

VasculatureOfBonyPartOfFemur

ArticularCartilageOfDistalEpiphyisOfFemur 

ArticularCartilageProximalEpiphysisOfFemur

VasculatureOfFemur
CavityOfFemur

The constitutional parts of the femur include the 
multiple tissue types that combine to form a long 
bone—the bone proper, the articular cartilage, etc.  
Note the bone proper also decomposes to include the 
bone material itself, the periosteum, and the 
medullary cavity.

The regional partition includes the structures where 
clinicians locate fractures and the relationships 
between these structures.  The constituents of long 
bone such as the periosteum, where fractures are not 
described to occur, are conveniently sequestered in 
the constitutional partition.  We adopted the relevant 
portions of the regional partition for use in our model.  
However, we adopted a simpler representation for the 
incorporation of articular cartilage into the model for 
this initial iteration.

Modeling Design Choices
We now present some high-level classes and object 
properties that characterize the entities in which we
are interested.

Bone
LongBone Bone
Femur LongBone
Humerus LongBone
ObjectProperty(regionalPartOf)
reflexive(regionalPartOf)
transitive(regionalPartOf)
BoneRegion Bone
ObjectProperty(findingSite)
domain(findingSite) = Disorder

Disorder
Fracture Disorder ingSite.BoneRegion

The class Bone is effectively the class BoneOrgan in
the FMA.  Within this initial iteration, we are neutral 
regarding the alignment of Bone with the Upper 
Ontology of FMA, i.e.,  aligning with the is-a 
hierarchy consisting of CavitatedOrgan, Organ,
AnatomicalStructure, MaterialAnatomicalEntity,  and 
AnatomicalEntity, as we did not see an impact of this 
in the context of the application at hand. The property 
findingSite aligns with the SNOMED CT relationship 
which assigns locations to clinical conditions

We declare the property regionalPartOf to be 
reflexive, thereby inducing Bone to be a BoneRegion.
This has the important effect of unifying the treatment 
of entire long bones and bony landmarks with respect 
to findingSite—fractures may be declared to occur 
equally within the entire bone or at the landmark.  We 
declare regionalPartOf to be transitive to support the 
interrelationships between discrete landmarks, larger 
regions of bone, and the entire bone. 

Anatomical vs. Functional Partition
We add the following subclasses of BoneRegion into 
the model:

AnatomicBoneRegion
FunctionalBoneRegion

In clinical practice, pathology may be attributed to a 
true anatomic entity or a functional entity where 
unique pathologies behave similarly, are responsive 
to similar treatments, are aggregated for
epidemiologic purposes, etc.  In orthopedics, for 
example, several unique fractures all aggregate to 
fractures of the proximal femur.  As previously noted, 
the FMA incorporates true anatomic regions and 
functional regions.   We partition bone regions into 
either anatomic or functional components to support 
the independent enumeration of these features, as 
described in the use case.

Propagation of Locative Relationships
A key functionality that is required to support the use 
case questions discussed earlier is the ability to 
propagate the location of a fracture from a given 
region to all the regions to which it has regionalPartOf
relationships. For instance, if a fracture is located in 
the femoral neck, it is also located in the proximal 
metaphysis of the femur as the femoral neck is a 
regional part of the proximal metaphysis of the femur. 
This is represented using the following axiom:

findingSite regionalPartOf findingSite
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It may be noted that the transfer of locative 
relationships is also propagated transitively due to the 
transitive nature of regionalPartOf.

regionalPartOf regionalPartOf regionalPartOf

Articular Bone Regions
In order to explore articular fractures—the fracture of 
a bone region covered by articular cartilage, we 
incorporated the following concepts :

ArticularCartilage
ObjectProperty(coveredBy)
ArticularBoneRegion

ArticularFracture 
ArticularBoneRegion

This representation provides a simple method to 
distinguish between articular and non-articular bone 
regions.

RESULTS

Using the initial ontology, we were able to create a 
series of detailed clinical descriptions which 
classified as expected. Some examples are discussed 
next.

Locative Transfer over Regional Parts
rA facture of the Femoral Neck is classified as a 

fracture of the Proximal Femur. 

FemoralNeckFx findingSite.FemoralNeck
acture

findingSite.( regionalPartOf.ProximalEndOfFemur)
(Since FemoralNeck

regionalPartOf.ProximalEndOfFemur)
findingSite.ProximalEndOfFemur

(Since findingSite regionalPartOf findingSite)
Fx

Transitive Locative Transfer
A fracture of the Femoral Neck is classified as a 

fracture of the Femur. Let’s revisit the earlier 
example and begin with the following reformulation 
of FemoralNeck.

FemoralNeckFx

findingSite.( regionalPartOf.ProximalEndOfFemur)
findingSite.

                     ( regionalPartOf.( regionalPartOf.Femur))
(Since ProximalEndOfFemur regionalPartOf.Femur)

findingSite.( regionalPartOf.Femur)

(Since regionalPartOf regionalPartOf
regionalPartOf)

findingSite.Femur
(Since findingSite regionalPartOf findingSite)

The proof above indicates that we can represent 
direct relationships between bones and bone features
and infer regional partonomy relationships between 
them. 

Articular Fractures
Extending the model to describe and classify articular 
fractures is also accommodated by the model and 
creates no additional complications.  The articular 
parts of the distal epiphysis of the humerus—trochlea 
and capitellum—are created as articular regions, 
while the non-articular parts—the medial and lateral 
epicondyle—are created as regular bone regions. The 
only caveat to this approach is that partially-covered 
regions are not considered articular regions; the distal 
epiphysis of the humerus is not considered an 
articular bone region by this criterion.

Fractures of the parts are created in the usual fashion 
by restricting the fracture finding site.  Trochlear and 
capitellar fractures classify appropriately as articular 
fractures.  General fractures of the distal humeral 
epiphysis and articular fractures are then created in 
the same way.  Articular fractures of the distal 
humeral epiphysis are classified as subclasses of 
general fractures of the distal humeral epiphysis; 
trochlear and capitellar fractures are classified as 
further subclasses.  Fractures of the epicondyles 
classify correctly as general fractures only.  We did 
not specifically try to define non-articular fractures
(fractures of parts not covered by articular cartilage).

Breach of the Model
We note one failure of the model in the subset of 
bones we examined.  The FMA contains a regional 
part of the humerus, ‘Nutrient Foramen of Humerus’, 
literally, the hole where the nutrient artery enters the 
humerus.  Because fractures are usually not described 
through this feature, this constitutes a failure of the 
model to constrain the set of sensible locations of 
fractures.

In the FMA, the nutrient foramen is a subclass of 
Immaterial Anatomic Entity.  We can certainly 
remediate the model to additionally restrict bone 
regions to subclasses of Material Anatomic Entity.  
However, the appearance of the nutrient foramen as 
an arbitrary bone region bears further discussion.
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DISCUSSION

We have begun to explore the creation of a ‘micro-
theory’ for long bone fractures—an axiomitization 
that yields both sensible and logically correct
inference.  Using a set of framing axioms in 
combination with content from the FMA regional 
partition, we were able to describe and correctly 
classify a rich set of fractures, while maintaining a 
fairly parsimonious ontology.  The resulting ontology 
is quite constrained as compared to an SEP triple 
approach.  

Although this initial model successfully fulfills the 
use case, the breach raises significant questions.  
Because the FMA regional model admits arbitrary 
regions, there is no principled reason why an arbitrary 
region of a bone can sensibly be a fracture location.  
Our success seems to be an empirical finding—
further analysis is necessary to see whether the model 
hold across all bones, or can extend to parenchymal 
organs such as the lung or the liver—organs made of 
the same ‘stuff’.

Our model may succeed because bones exemplify a 
‘stuff/whole’ partonomy, where arbitrary regions are 
compositionally homogenous.  This does suggest that 
if regional parthood could be compositionally 
restricted, this would offer a more convincing model.
One obvious possibility for implementing this 
restriction is to utilize the GALEN partitive attribute 
“hasSolidDivision”, or perhaps a similar attribute 
with even more specialized meaning [13].  Currently, 
compositional properties are available through the 
constitutional partition of the FMA, i.e., if a part is 
composed of bone or a particular organ parenchyma, 
etc.  Further work is necessary to reflect 
compositionality from constitutionality.  We note that 
currently, wholes and parts have distinct roots in the 
FMA; in our model, it is important to treat parts and 
wholes similarly as bone regions.

This work provides initial insight into creating safe 
and effective inference over property chains for the 
purpose of creating and classifying clinical 
descriptions.  Because of the tremendous change 
management implications of incorporating new 
idioms into terminologies such as SNOMED CT, it is 
important that we demonstrate that such idioms are 
safe, effective, and scale.  Continuing work will 
investigate constraining the regional idiom with 
respect to homogenous compositionality, expanding 
our analysis to a larger set portion of the skeletal 
system, and examining the generalizability of the 
idiom to additional organ systems.
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Findings related to developing implementation 

specifications for the use of SNOMED Clinical Terms 

(SNOMED CT) in both HL7 and openEHR 

information models are summarized and compared. 

Common themes from this work, including overlaps 

between the expressivity of structure and 

terminology, are identified and discussed. 

Distinctions are made between aspects of meaning 

that are most readily represented by distinct 

structures, others where terminology offers greater 

flexibility and a 'gray-area' in which the relative 

merits are more balanced. Focusing on particular 

stages in the clinical information life cycle may 

suggest different points of balance and may lead to 

different approaches to integration. However, 

greater consistency is essential if clinical information 

is to be used effectively in electronic record systems. 

Consensus guidance documents of the type developed 

by the work described are only a first step. Mutually 

aware evolutionary refinement of structural and 

terminology standards is suggested as an 

enhancement to independent development. 

INTRODUCTION

The last few years have seen the emergence of 
SNOMED Clinical Terms®1 as the leading candidate 
for a controlled clinical terminology suitable for use 
in electronic health records2. In the same period, two 
structural information models have been advanced as 
standards for representing clinical information. The 
HL7 Reference Information Model has been used as 
the basis for a standard model of Clinical Statements3

which is used in message specifications and in the 
HL7 Clinical Document Architecture, Release 2 
(CDA)4. Meanwhile, the European standard for 
Electronic Health Records (EN13606) has been 
utilized by the openEHR Foundation5 as a basis for 
developing a range of highly-constrained clinical 
statement and record composition models (called 
archetypes and templates). 
These developments have been followed closely as 
part of the development of national specifications for 
capture and appropriate sharing of clinical 
information in the National Health Service (NHS) in 
England. NHS Connecting for Health (NHS CFH) 
chose SNOMED CT as the common clinical 
terminology to be used by all computers in the NHS 

in England. It also chose to utilize other relevant 
standards, including HL7 Version 3 for 
communications. More recently, openEHR-based 
archetypes and templates have been used to assist the 
specification of clinical data capture in regional NHS 
health record application projects. This required us to 
consider how SNOMED CT should be used with a 
combination of openEHR data models and existing 
HL7 Version 3 based models, as part of coherent 
‘end to end’ system design specifications. 
This paper draws together some of the findings of 
this work. It suggests general principles that may 
have wider applicability to when integrating 
terminologies with standard structural information 
models.  

CONTEXT 

SNOMED CT and HL7 Version 3 
In 2004 it became apparent that there was widespread 
interest in the use of SNOMED CT in the HL7 
community. The majority of the interest focused on 
how to integrate SNOMED CT with the emerging 
HL7 Version 3 standard. Following an initial meeting 
hosted by NASA, the HL7 Vocabulary Technical 
Committee launched the TermInfo Project to address 
this. The project was also supported by SNOMED 
International through an Associate Charter 
Agreement with the HL7 Board. The project has 
discussed a wide range of issues and prepared 
detailed guidance. After several ballot cycles, 
involving formal review and evaluation, the Guide to 
Use of SNOMED CT in HL7 Version 36 was 
accepted as a 'Draft Standard for Trial Use' in 
September 2007. 

SNOMED CT, EN13606 and openEHR
During 2007, activities in the UK placed greater 
emphasis on the engagement of clinical experts in 
specifying content requirements for electronic health 
records. To facilitate this, the NHS in England has 
used openEHR archetype and template design tools. 
The underlying EN13606 architecture, like HL7 V3, 
is based on a fairly generic reference model. 
However, the openEHR tools for archetype and 
template design follow a paradigm that is similar to 
the design of a structured data collection form. This 
approach seems more familiar to clinical users than 
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the design of HL7 message models. While this 
familiarity encourages greater clinical engagement, it 
does not guarantee consistency and reusability of the 
captured information. To address this, decisions need 
to be made about how the captured information is to 
be represented. This poses questions about the way in 
which SNOMED CT should be used in association 
with openEHR archetypes and templates. While the 
ways in which these questions are addressed may in 
some cases be specific to the archetype methodology, 
the underlying issues arising from combining 
structure and terminology are similar to those 
encountered by the TermInfo Project.  
In addition to the theoretical similarities, there are 
practical reasons for considering the relationship 
between this work and the TermInfo Project. Health 
record content specified using this approach may 
subsequently be communicated using HL7 messages 
or documents. Consistent approaches to the 
integration of terminology with information models 
are likely to simplify any necessary transformations 
between these different structures. 

METHODS

Identifying and managing overlaps 
The TermInfo Project started by considering specific 
questions about how particular items of clinical 
information should be represented. In several cases, 
more than one option was found and discussion 
centered on which of these was the 'correct' or 'best' 
option. In each of these cases, the alternative 
approaches arose from the ability to express the same 
meaning, using either a structural element or a facet 
of the terminology. Therefore, the focus of the work 
shifted to identification of the areas of overlap 
between the semantics of HL7 Version 3 information 
models and SNOMED CT. The HL7 Clinical 
Statement Pattern3, a common model for clinical 
information representation within HL7, was used as 
the practical point of reference for examples. 
This allowed systematic analysis of alternative 
solutions to particular types of issue, leading to more 
consistent resolution. Where overlaps were 
identified, the options shown in Table 1 were 
considered.

HL7 Representation SNOMED Representation 
1 Required Required 

2 Optional Required 

3 Required Optional

4 Required Prohibited 

5 Prohibited Required 

6 Optional (either or both) 

7 Optional (either one but not both) 

Table 1 – Options for overlaps. 

Depending on which of these options is chosen 
different rules are required to derive one form from 
the other or to validate the consistency of dual 
representation. If both representations mean precisely 
the same, then either option is equally acceptable. 
However, in many cases there are differences in the 
precise nature of the information or level of detail. 
Ambiguity may also arise when both representations 
are permitted because the second representation 
could be interpreted as a restatement or a 
combinatorial factor (e.g. "a request to request …", 
"finding … not absent", "family member has family 
history of ...").
The TermInfo recommendations address the most 
common overlaps with specific guidance on 
preferred representations that resolve these 
ambiguities. 

Identifying and managing gaps  
In some cases, neither the information model nor the 
terminology may offer a way to meet a particular 
requirement. In theory, a gap is easier to address than 
an overlap because it simply requires a decision on 
which component should be extended to meet the 
requirement. However, requirements for resolution to 
meet an immediate business need may force the use 
of an interim measure or work-round. More detailed 
analysis, by those responsible for the relevant 
standard component, may lead to a different 
recommended approach. The end result may be to 
turn a gap into a future overlap as the work-round is 
replaced by a more appropriate solution.  
To minimize the risk of short-term decisions turning 
into new legacy issues, gaps were documented and 
passed to the relevant organization or expert for rapid 
evaluation. Even where the release cycle for 
contributing standards makes a short term fix 
essential, this type of approach reduces the likely 
impact of future substantive correction. 

Binding terminology to specific structures 
The NHS work took detailed openEHR templates 
specified by clinical groups as a starting point. The 
objective was to identify appropriate ways to bind 
elements of SNOMED CT to information model 
nodes in order to represent the intended meaning.  
There was an urgent business requirement to apply 
codes to a set of pre-existing templates. However, the 
need for a more consistent approach was also 
recognized. To facilitate this, the short-term exercise 
of coding specific templates was augmented with a 
more systematic review to identify the types of issues 
encountered and to propose a more systematic and 
scalable approach for future NHS development.  
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RESULTS

General comment 
This section summarizes some common themes 
arising from the activities described. Our intention is 
to highlight some key findings rather than to provide 
an exhaustive list of all the issues encountered. 

Managing semantic granularity 
A general challenge for using a terminology with an 
information model is aligning classes and attributes 
in the model with the expressivity supported by the 
terminology. There is a requirement to match the 
semantic granularity of coded expression from the 
terminology with the slots in the structural model. If 
the information model provides a single coded 
attribute to represent a particular concept, this 
assumes that the terminology contains a code to 
represent that precise concept.
SNOMED CT allows codes to be post-coordinated to 
create expressions representing more specific 
concepts. The model for these post-coordinated 
expressions is described in 'SNOMED CT Abstract 

Models and Representational Forms'7 and approved 
domain and range constraints are published in the 
'SNOMED CT Technical Reference Guide'8.
SNOMED documents also specify transformation 
rules that can be applied to normalize expressions to 
enable computation of equivalence and subsumption9.
Post-coordination can only be used if the information 
model provides a structure that can accommodate this 
type of representation. Similarly, the rules for 
normalization have a dependency on any semantics 
embedded in the surrounding structures. 
In most cases, each class in the HL7 Clinical 
Statement pattern represents a unit of information 
that can be readily coded using a single SNOMED 
CT expression. Furthermore, the HL7 coded data 
types support post-coordination. Thus the level of 
coding granularity was relatively easy to align with 
the classes in the model. Some HL7 classes also 
contain additional coded attributes which, while 
necessary when using other code systems, duplicate 
information present in a single SNOMED CT 
expression. Most of these attributes are optional and 
can be refined out of specific models to minimize 
potential confusion. 
In contrast the openEHR related work involved 
review of specific archetypes and templates. The 
intention of this work was to assign appropriate 
terminology bindings to each coded node in the 
template. Initial review of these identified a wide 
range of different structural granularities. As a result, 
the appropriate SNOMED CT expression may 
depend on the values entered in three or more 
separate but related nodes in a branch of the 
template. This presents a significant problem for 

terminology binding, since, if the individual slots in 
the template are coded independently, similar types 
of information may be coded quite differently. More 
importantly, these different representations would not 
be amenable to normalization without a clear 
understanding of the semantic relationships between 
the separate coded slots. It may be possible to apply 
more rigorous semantics to the design process to 
preemptively reduce these variations. However, for 
the purposes of the current work, the chosen 
approach was to retrospectively identify the units of 
clinical meaning that could be appropriately captured 
by SNOMED CT expressions. The co-dependencies 
between different nodes in the archetypes and 
templates were captured and linked to the appropriate 
SNOMED CT constructs using XPATH.  

Context, situations and sections 
Alternative representations of contextual information 
were another common finding from both activities. 
The SNOMED CT concept model includes attributes 
that allow representation of various clinical situations 
such as family history, past history and current 
findings. The objective of this part of the model is to 
clearly distinguish between the same finding in 
difference contexts. For example, to ensure that 
'family history or asthma' is subsumed by 'family 
history of respiratory disorder' but not by 'past 
medical history of asthma'.  
Both HL7 and openEHR provide structural 
conventions for representing these types of 
contextual information. Structural options include the 
use of a document section, a specific entry in a 
template and references to the subject to whom the 
information applies. 
Each of these approaches has distinct merits. A 
section-based approach matches the way many 
clinicians work when capturing and reviewing data. 
Structures that allow references to specific family 
members are more flexible for representing genetic 
information. The SNOMED CT approach allows a 
single coded expression to unequivocally represent 
family history. 
The key to managing these differences seems to be to 
allow them to be safely combined by ensuring that 
the way terminology is bound to the structures 
facilitate transformation to a common normal form. If 
a family history section is used, this must be bound to 
the SNOMED CT representation of family history so 
that the disorder concepts listed within the section 
can be reliably transformed into appropriate 
SNOMED CT expressions for analysis. Similarly, if 
a structural model is used to represent relationships 
to specific people, the types of relationship (e.g. 
parent, brother, sister, etc.) should still be represented 
using SNOMED CT.  
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Detailed entries, summaries and check-lists 
Structural models for representing clinical 
information may include assumptions about the level 
of detail captured. For example, some models assume 
different structures for the detailed story of 
presenting complaint, a summary of past history and 
a general review of symptoms affecting body 
systems. This approach aligns with the way that 
paper records are written and with the design of data 
collection forms for specific types of condition or 
consultation. 
In contrast, SNOMED CT provides concepts at 
different levels of detail that can be used in a range of 
situations. The structure of the terminology allows 
more detailed refinement to be added where this is 
appropriate. This approach assists with retrieval for 
decision support or analysis, as the way in which the 
data is recorded is not specific to the way in which it 
is captured. 
It is possible to combine these approaches by binding 
lists of summary values in a template to relevant 
concepts in the terminology. However, in both the 
HL7 and openEHR related work, this raised 
important questions about the intention behind a 
chosen data collection paradigm and information 
model structures that mimic it. These issues, which 
apply to many types of structured data collection, are 
seen most clearly in relation to check-lists.  
There is a clear consensus that check-lists are a 
useful or even essential tool for effective data 
collection. However, in both pieces of work it was 
evident that there are different views about the 
representation of the information captured using 
check-list. These views can be characterized as: 

a) Representing the information as captured. 
b) Representing the information independently 

of the way in which it was captured. 
View (a) represents each entry in the list as the name 
of the check-list item (i.e. either text or a linked code) 
and a value (e.g. 'true', 'false', 'not known') based on 
the response given. This approach is concerned with 
capturing information about the completion of the 
check-list and also ensuring the reviewer knows how 
the data was acquired. 
View (b) represents the meaning implied by each 
entry in that same way, as if that information was 
captured in another way (e.g. by selecting a code 
from a terminology search). This approach seeks to 
ensure the information can be used to return reliable 
answers to questions irrespective of the nature of the 
user-interface. View (b) can be seen as a 
representation of what Rector10 describes as the 
'model of meaning' while view (a) is a specific 'model 
of use'. 
Strong arguments can be advanced for meeting both 
sets of requirements. However, the balance between 

them depends on the rationale for using a check-list, 
and the value of reusing the captured data.  
Further investigation of the use of check-lists 
identified a range of reasons for specifying 
requirements using check-lists: 

To remind the clinician to ask or consider a 
question. 

To record whether a question was asked or 
considered.

To allow rapid entry of common significant 
information without recourse to searches. 

To provide an example of the type of 
information that should be recorded – 
presuming that other entries can be added as 
needed.

As a single place to look for and maintain key 
information – assumes that the check-list may 
be populated from previously collected data. 

Even within the same NHS openEHR template, the 
reasons for using check-lists varied. These 
differences may influence decisions on terminology 
binding. Depending on the reason for using a check-
list approach, there may also be a requirement to 
represent view (a) to audit the process of care and/or 
data collection. Irrespective of the process, if the 
information is to be reusable for clinical purposes, 
the consistency offered by view (b) also needs to be 
supported.  

Interdependencies between multiple data nodes 
As noted earlier in this paper, there may be 
differences in semantic granularity between structural 
and terminological components. These differences 
mean that in some cases multiple nodes in the 
structure need to be considered to generate a single 
SNOMED CT expression. However, this is only one 
of the types of interdependency noted during this 
work.
The value applied to one node may constrain the 
potential range of coded expressions that can be 
applied to another node.  
An example of this is the case where the structural 
model provides separate attributes for 'disease', 'site', 
and 'laterality'. Depending on the specified disease 
the site may either be superfluous (e.g. appendicitis) 
or essential (e.g. 'fracture') and the relevant of 
'laterality' may depend on the selected site. Even in 
the case of disorders without a fixed site, a post-
coordinated expression might contain the site and/or 
laterality.
Many interdependent constraints may be expressed 
by reference to the SNOMED CT concept model. 
However, this depends on the assumption that the 
specific nodes in the structural model are aligned 
with the relevant attributes in the concept model.  
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In other cases, the existence of a preferred or 
mandatory form or representation in the structural 
model may indirectly constrain the use of 
terminology. 
The HL7 Pharmacy models represent the action of 
administering a substance in one class (Act) and the 
substance administered in another associated class 
(Entity). Both the nature of the action and the entity 
can be represented using SNOMED CT concepts. 
However, SNOMED CT also supports expressions 
that include the substance administered as a 
refinement. To avoid conflicts with the models, 
coded expressions that incorporate the substance may 
need to be prohibited.  

For example, the concepts 'subcutaneous 
injection' and 'insulin' might be used in the two 
associated classes but the concept 'subcutaneous 
injection of insulin' might not be permitted.  

DISCUSSION

Terminology, structure and meaningful records 
Electronic health records offer a range of potential 
benefits. Many of these depend on being able to 
consistently process meaningful clinical information 
within those records. Two distinct threads have 
developed to address this requirement – a structural 
thread and a terminology thread. 
The structural thread places emphasis on the set of 
specific items of data that express a particular class 
of clinical information. In contrast, the terminology 
thread seeks to provide reusable codes or labels for 
events or ideas. These two threads have developed 
and work together in almost all areas in which 
information is processed. This symbiotic co-existence 
is apparent at all stages in the life cycle of an item of 
clinical information - data entry, display, storage, 
communication and retrieval. Different approaches to 
the use of structure and terminology have developed 
in proprietary clinical systems and efforts to develop 
standards have tended to separate terminological and 
structural aspects.
Previous work on binding between information 
models and SNOMED CT reported by Sundvall11

noted the value and limitations of simple equivalence 
binding between a node and a terminology concept. It 
emphasized the need for a powerful constraint 
binding formalism to address these limitations. 

Clinical information life-cycle perspectives 
Different approaches to representing clinical 
information often arise as a result of perspectives that 
are influenced by particular stages in the life-cycle of 
that information (see figure 1). All three components 
considered by the work described in this paper have 
the broad ambition of representing meaningful 
clinical information. However, each of them has a 

significantly different perspective. The focus of HL7 
Version 3 is on interoperable communication and 
thus it specifies static and dynamic models related to 
interaction between discrete applications. SNOMED 
CT takes a retrieval perspective; by representing 
subsumption and interrelationships between the 
different concepts, it enables effective subsequent 
retrieval for multiple purposes. EN13606 archetypes 
have a similar role to the classes of the HL7 RIM. 
However, openEHR archetype and template design, 
are more directly influenced by the data capture 
perspective. Each template reviewed walks through 
the typical process of collecting data during a 
particular type of clinical encounter. As shown in 
Figure 1, these perspectives are interdependent.
The primary rationale for binding SNOMED CT to 
structured clinical information is to enable selective 
retrieval and reuse of information.  

Figure 1 – Clinical information life-cycle (summary) 

The process of integrating terminology with structure 
may also involve some normalization of the structure 
to address the anticipated retrieval requirements. 
Structural differences may obscure semantic 
similarities and binding a code to a field will not 
necessarily deliver the full potential of the 
terminological component. For example, a template 
may structure some items of current and past clinical 
history in the form of a checklist, some as codes 
chosen from a picking list, and others as more 
detailed collections of coded and textual data items. 
A degree of normalization may be essential to ensure 
that the record can be used to answer questions such 
as, 'does the patient have a past clinical history of 
respiratory problems?' 

Balancing the use of structure and terminology 
Both structural and terminological approaches have 
specific strengths and weaknesses. Those wishing to 
exploit the strengths of a particular structural or 
terminological approach may differ in their 
perception of the appropriate balance between these 
components. However, there is general agreement 
that some facets of clinical information are best 
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represented using structure, while others are more 
effectively expressed using terminology.  
Figure 2 summarizes a consensus position agreed in 
the openEHR related terminology binding project. 
Different facets of clinical information were 
identified and assigned to one of five categories 
indicating whether a terminological or structural 
approach was recommended and the strength of that 
recommendation. The two outer categories 
encompass facets that can only be effectively 
represented using one of the approaches. Two further 
categories include facets for which one approach has 
a clear advantage but the other approach is also 
possible. Between these is a 'gray area' in which the 
relative merits of the two approaches are more finely 
balanced or may depend on a specific use case. 

Practical principles for terminology binding 
The following principles are suggested as a basis for 
detailed recommendations on integration between 
any combination of a terminology and a structural 
model. These principles are based on those agreed by 
the HL7 TermInfo Project. They have been revised 
and extended to take account of more recent practical 
experience summarized in this paper.  

1. Understandability 
The recommendations must be understandable by 
implementers who are familiar with the use of the 
terminology and structural models being integrated.  
The integration recommendations need not repeat 
general advice on the underlying components but 
should not require other pre-existing knowledge.  

2. Reproducibility 
The recommendations should be tested on members 
of the intended target audience of implementers to 
ensure they are interpreted and applied consistently. 

3. Usefulness 
The recommendations need not cover all possible use 
cases but should cover all the most common 
scenarios encountered in the intended scope of use. 

4. Reusability and common patterns 
Representations that can be reused consistently in 
many contexts should be recommended in preference 
to those that are specific to a particular context.  

For example, the representation of a finding 
should follow a similar pattern whether 
recorded as a problem, a new diagnosis, an item 
of past medical history, detailed documentation 
of presenting complaint or a discharge 
diagnosis. 

5. Transformability and normal forms 
If alternative representations are permitted, rules 
should be specified to unambiguously transform 
these into a common representation. 

Terminology model only 
Specific concepts: 

For example, diseases, symptoms, signs, procedures, 
drugs, etc. 

Semantic relationships between concepts 

For example, relationship between 'viral pneumonia', 
'lung', 'virus', 'infectious disease'. 

Representation of constraints on use of terminology 

For example, concept model and value-set definition 
formalism.

Terminology model preferred (structural model deprecated)

Constraints on combination of concepts in instances including 
abstract model of post-coordination and permissible attributes 
and ranges for refinement of concepts in specified domains: 

For example, restrictions on 'finding site' refinement of 
'appendicitis', conventions on representing laparoscopic 
variants of a procedure.

Gray area (preference unclear or use case dependent) 
Representation of contextual information related to instances 
of clinical situations 

For example, family history, presence/absence, certainty, 
goals, past/current, procedure done/not-done. 

Representation of additional constraints on post-coordination 
of concepts for specific use cases 

For example, constraints on terminology use specific to 
immunization and related adverse reaction reporting.

Structural model preferred (terminology model deprecated)

Representation of relationships between distinct instances of 
record entries and other classes 

For example, assertions of causal relationships between 
entries, grouping of entries related by timing, problem or 
other organizing principles.

Structural model only 
Attributes with specific data types 

For example, dates, times, durations, quantities, text 
markup.

Identifiable instances of real-world entities 

For example, people, organizations, places. 

Overall record and/or communication architecture 

For example, EHR extract, EHR composition, openEHR 
reference model, CDA documents, HL7 messages. 

Representation of constraints on use of particular classes or 
attributes in given use cases 

For example, formalism for templates applied to constrain 
openEHR archetypes or HL7 CDA documents.

Figure 2 – Strengths of structure and terminology  

6. Tractability  
Requirements for tooling to transform or validate 
instances that conform to the recommendations 
should be computational tractable.  

7. Practicality 
Existing tools and applications, either in their current 
form or with reasonable enhancements, should be 
able produce the recommended instances.  
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8. Scalability 
Recommendation should not require a combinatorial 
explosion of pre-coordinated concepts. 

For example, the model should not require the 
creation of the cross product of "Allergic to" 
and all drugs and substances.  

9. Limiting arbitrary variation 
Optionality should be restricted where possible to 
limit arbitrary variations. Where more than one 
approach appears to be equally valid based on other 
criteria, a single approach should be recommended to 
avoid unnecessary variation.  

If one approach has already been successfully 
implemented and the other has not, the 
approach that has been implemented should be 
selected.
If two or more approaches have already been 
implemented, one should be recognized as the 
preferred form. Other approaches that are 
already in use may be permitted but should not 
be recommended for new implementations. 

10. Responsive participating standards 
The participating structural and terminology 
standards should provide prompt mechanisms to 
enable notification and correction of gaps and 
inconsistencies. These mechanisms should be used 
rather than local work rounds, to avoid increasing the 
number alternative representations. Implemented 
systems and participating standards should be 
sufficiently agile to allow rapid and reasoned 
development of effective compositional solutions.  

Requirements for specific guidelines 
The principles outlined in this paper are only a 
foundation. Practical implementation requires 
detailed specific guidelines for integration between 
SNOMED CT and an information model. The first 
detailed guide on use of SNOMED CT with HL7 
Version 3 is now available as a Draft Standard for 
Trial Use6. Detailed guidance related to a trial set of 
openEHR archetypes and templates is under review 
but has yet to be finalized and more widely 
published. 

Dependency-aware evolution 
An original design goal of SNOMED CT was 
usability in applications with different information 
models. Likewise, the standard information models 
of HL7 Version 3 and EN13606 were designed to 
enable use of different terminologies. Thus HL7 
specifications include coded attributes that need to be 
bound to specific value sets before implementation. 
Similarly, openEHR (a development based on 
EN13606) states5 that its fundamental building blocks 
(archetypes) are 'terminology neutral' and that a 

single archetype can be 'bound to more than one 
terminology'.  
This mutual openness between alternative code 
systems and information models seems an attractive 
proposition. However, we contend that the extensive 
overlaps and interdependencies demonstrated by the 
work described in this paper point to a requirement 
for closer mutually aware development of 
information models and terminologies. While tools 
and guidelines for binding are necessary to address 
the interface between current information models and 
terminologies, they are unlikely to be sufficient 
unless future development of information models and 
terminologies take due account of the need to work 
together rather than as independent variables.  
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Strategies for Updating Terminology Mappings and Subsets 
 using SNOMED CT® 

John Mapoles, Ph.D., Corey Smith, Jane Cook, Brian Levy, M.D. 
Health Language, Inc., Aurora, Colorado 80011 

Abstract: 
SNOMED CT® (SCT) is a large, comprehensive 

medical terminology with many applications in the 

health care IT sector. SCT is often mapped to 

existing billing classifications as well as to 

proprietary terminologies in order to support access 

to and from SCT from existing applications.  Subsets 

of SCT are used to reduce complexity and size.  

These subsets can vary from small sets that will be 

used to populate drop down lists in electronic 

medical record applications and larger lists that are 

used for reference, e.g. the SCT Non-human subset.  

There are costs and time limitations in maintaining 

mappings and subsets, particularly after each SCT 

release when concepts are retired and new concepts 

are added.  There is a need for a careful strategy to 

identify changes, determine which changes need to 

be reviewed, and to rank changes so they can be 

reviewed systematically in order of importance.  Here 

we outline our updating strategies for the Health 

Language Medical Specialty Subsets, a list of 10,000 

SCT terms grouped into 45 subsets.  These strategies 

can be used for any subset of SCT as well as for 

mappings created to and from SCT. 

Introduction: 
Electronic health records (EHR) and other healthcare 

IT applications rely on controlled medical 

terminologies to provide well defined concepts for 

accurate and consistent encoding of records and data 

mining.  SNOMED CT® (SCT) provides broad 

coverage of all medical domains with approximately 

280,000 active concepts.  A great deal of attention 

has been focused on the models and strategies to 

implement SCT1,2,3.  Most applications will use 

defined subsets of SCT for specific use cases rather 

than exposing all of SCT to all users.  Subsets are 

collections, lists, of SCT concepts or terms.  

Applications using SCT will need to be able to store 

these lists for purposes of maintenance and delivery 

to EHR interfaces.  

Mappings are often created between SNOMED 

CT and other terminologies such as billing 

classifications, ICD-9-CM and ICD-10, as well as 

local and proprietary terminologies.  Mappings can 

be represented as a pair of codes, the source and 

target of the map or relationship.  These mappings 

can be used for translation of information from one 

set of codes to another. 

 These mappings and subsets represent work that 

a local site or user is performing to the standard – in 

this case SCT.  Thus, SCT is distributed from the 

standards body, and local users such as EHR vendors 

or hospitals, need to add value to their SCT version 

with mappings and subsets.  It is critical that the local 

user adopts the next version of SCT in order to 

prevent semantic drift – multiple versions of a 

terminology being used that drift in meaning enough 

to be incompatible.  In the paper, Oliver4, et. al. 

discuss some of the principles of localization of 

terminologies and also explores the impact of 

migration of localized terminologies to the next 

version of the standard.  Updating subsets and 

mappings as described in this paper actually only 

involves a small subset of the many kinds of changes 

that occur to the terminology.  Cimino5, et. al. discuss 

the types of changes that need to be considered such 

as refinement, name changes, code-reuse and more 

that impact the updating of terminologies and content 

based on them. 

The Semantic Web work is now introducing new 

issues with regards to ontology versioning.  Liang6,

et. al. discuss the impact of changes in ontologies to 

existing applications that depend on them.  In this 

semantic web paper, a middle layer to monitor and 

detect changes is proposed to be used between the 

underlying ontologies and the dependant 

applications.  The work we present here with subsets 

uses a terminology service and specialized scripts to 

serve as this middle layer between the standard 

ontology, SCT in this case, and the resulting 

applications – EMRs for example that depend on the 

subsets.

Maintenance of the mappings and subsets are 

costly and time dependent because the content is 

often in production.  Maintenance can involve 

changes that are dictated by the applications that use 

the content but also because the underlying SCT data 

model has changed.  Semiannual updates to SCT can 

change the SCT model to varying degrees, sometimes 

substantially.  An SCT update involves new concepts 

and terms, retirement of concepts and terms, and 

addition and deletion of relationships.  Each mapping 
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and subset needs to be evaluated so that only the 

specific groups of changes that immediately affect 

the content are considered.  This analysis is essential 

for performing the update quickly and efficiently. 

Health Language (HLI) provides a terminology 

server, or Language Engine (LE) that serves up 

terminologies and related content to other 

applications.  HLI also provides modeling and 

mapping tools to allow users to update and localize 

the content in their terminology server. Health 

Language (HLI) has developed a set of 45 subsets, 

Medical Specialty Subsets (MSS), that represent 

"clinically friendly" terms used in medical practice.  

These subsets represent 10,000 entries that must be 

rapidly updated for production release.  Changes to 

SCT must be filtered so that changes that impact the 

MSS are reviewed, without the distraction of changes 

that are not important to the MSS.  This paper will 

discuss the principles used to update the subsets.  

These same principles are also used to update our 

various mapping projects which include maps 

between SCT, billing classifications, and proprietary 

terminologies. 

Methods 
Medical Specialty Subsets: The MSS consist of 45 

subsets containing 10,000 SCT terms.  The subsets 

contain “clinically friendly” SCT terms most often 

encountered in clinical practice.  The subsets were 

constructed so that SCT concepts were specific to the 

level of granularity commonly needed by clinicians 

in that specialty practice. The top approximately 150 

diagnoses and procedures applicable to each specialty 

were incorporated into the subsets.  Claims data as 

well as medical domain expert knowledge was used 

to determine these concepts that are applicable for the 

subsets.  Concepts with low incidence based on 

claims data, e.g. rabies, were not included. 

Only concepts mapped to billable ICD-9-CM 

and CPT codes were used to construct the subset, 

using the College of American Pathologists SCT to 

ICD-9-CM cross maps and HLI SCT to CPT cross 

maps.  This increases the possible utility of the 

subsets for billing purposes

Some concepts may be too specific for one 

subset, but applicable in another.  For example, Acute 

anterior myocardial infarction may be too specific 

for the Family Practice subset, but applicable in the 

Cardiology one. 

The MSS are stored in the HLI LE® database.  

Members of the subsets can be viewed and managed 

using the HLI browser and editing tool LExScape®
or the HLI Java application programming interface 

(API).  HLI APIs are a full set of Java classes, 

interfaces, and methods that allow access and 

management of data in an HLI LE database.  The 

APIs can be bundled into complete applications such 

as LExScape and other HLI management tools or 

they can be used to terminology enable applications 

that require both terminology support and other 

functionality not related to terminology.  The APIs 

are collected into standard jar files and can be 

accessed and using standard Java programming 

methods. 

Terms included in the MSS must meet the 

following requirements: 

a. Subsets related to disease take terms from 

concepts in the SCT Clinical Findings 

taxonomy. 

b. Subsets related to procedures take terms from 

concepts in the SCT Procedure taxonomy. 

c. Terms must have an SCT description status of 

0 on a concept with a status of 0.  These 

are referred to as active terms.  A status of 

1 or greater is retired or limited in use. 

d. A subset can contain only one term from each 

concept. 

e. Concepts that contain terms in the disease 

subsets must have a valid relationship to 

ICD-9-CM as defined by the College of 

American Pathologists produced SCT to  

ICD-9-CM cross mapping.  Only those 

concepts that have a cross map to a 

billable ICD-9-CM code are considered. 

f. Concepts that contain terms in the procedure 

subsets must have a valid relationship to 

CPT as defined by the HLI SNOMED - 

CPT relationships.  Only those concepts 

that have a cross map to a billable CPT 

code are considered. 

SNOMED CT: The SCT release of January 31, 2007 

was downloaded from the College of Amercian 

Pathologists and was transformed into the HLI's data 

structure and stored in the LE database. 

Changes to SCT: Changes to SCT between releases 

are calculated by comparing consecutive versions of 

SCT using the HLI Java APIs.  The SCT core 

vocabulary consists of three broad object types: 

concepts, terms (descriptions), and relationships.  

Although concepts and terms are never deleted from 

SCT they can change status from active to limited or 

retired.  Concepts can also move between SCT 

hierarchies.  The number of changes that occur each 

time SCT is updated varies widely and is distributed 

throughout all SCT taxonomies. 

 Within the scope of this project we are 

concerned with term changes, because the subsets are 

lists of SCT terms.  Concept changes must also be 

tracked because if a term's concept moves out of a 

subset's target hierarchy the term can no longer be 
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used in the subset.  Changes in the defining 

relationships of the concepts generally do not impact 

the placement of the concept in the MSS because if 

the concept changes in meaning completely, then it 

will be retired in SCT.  The types of changes that are 

considered were: 

a. Concepts or terms that became limited or 

retired. 

b. New terms in the target hierarchy. 

c. A term's concept no longer has a relationship 

to a reference terminology, i.e. ICD-9-CM 

or CPT. 

These change types were then analyzed by 

creating custom Java scripts written to the HLI APIs.  

These scripts can then be re-run for each SCT update.  

The output of these scripts are then fed into the HLI 

modeling and mapping tools.  Each change type is 

presented to the modeler in the tool as a separate 

project of affected concepts; thus a collection of 

small update projects is generated for each SCT 

release.

Once the update is completed, the MSS are then 

versioned as a set and released.  Versioning collects 

all subset changes, including new terms, and stamps 

them with a version number applicable for the HLI 

product.  Each version number is then tied to a 

release of SCT. 

Results
 The goal of any update is to isolate changes that 

bear directly on the data sets of interest because the 

SCT update is generally so large that all changes can 

not be reviewed in a timely fashion.  Once the 

changes that impact the data sets are isolated they 

must be categorized and arranged so that the most 

important changes are reviewed first. 

 For the MSS the following change types are 

considered important: 

1. Invalid concepts or terms: these are concepts 

or terms that have been retired, that have 

changed to status limited SCT status value 6  

- representing a classification or 

administrative concept, that are no longer 

mapped to a reference hierarchy, or that are 

still active but have been moved out of the 

target taxonomy. 

2. New terms on concepts in the subset:

Because terms from these concepts are 

already in the subset a new term on these 

concepts are especially interesting as a 

possible replacement. 

3. New terms on descendents that have a 

relationship to ICD-9-CM or CPT:

Descendents of concepts that are in the 

subset are of special interest because they 

are likely to contain terms that are more 

specific than the term in the subset. 

4. All other new terms: These are all new terms 

in the target taxonomy that are not part of 

the type-2 and type-3 group.  These are due 

to the addition of new concepts and the 

addition of new terms on existing concepts. 

Changes should be reviewed in the order of 

importance.  Limited time and resources dictate that 

essential changes must be repaired first. 

Changes in relationships and qualifiers in 

SNOMED CT are not considered during the udpates 

process. Minor changes in relationships are not 

considered to change the meaning of the concept.  

Major changes usually cause the concept to be retired 

and replaced.  Changes to IsA relations, and 

indirectly to defining non-IsA relations, are 

considered in change types 3 and 4.  Changes to 

qualifying relations are not considered because these 

relations are not definitional 

Management of the process

Changes of type-1 must be reviewed first 

because they break the requirements of the MSS.  

These terms must be removed and possibly replaced.  

Whenever possible the SCT historical relationships 

(e.g. SAME AS, MAYBE A, REPLACED BY, etc.) 

are used to identify an active term replacement.  For 

example, in an earlier SCT update, the concept of 

Coronary artery thrombosis was retired and placed 

into the Ambiguous concept hierarchy.  This retired 

concept now has a MAYBE A relationship to the 

active Myocardial infarction concept.  The Java 

scripts written to identify the changes include an 

algorithm to locate these historical relationships and 

potential replacement SCT concepts.  Modelers then 

can view these potential replacement concepts in the 

tool. 

Once the requirements of the subset are satisfied, 

possible new or replacement terms can be considered.  

Changes of type-2 are new terms on concepts in the 

subsets.  These concepts are the most likely to 

contain replacement terms for existing terms. 

 SCT is arranged into hierarchies.  Concepts 

become more specific when moving from the top to 

the bottom of a hierarchy.  Changes of type-3 

leverage the SCT hierarchy.  Terms that are 

descendents of terms in the subset are likely to be of 

interest.  They are likely to be more specific than 

existing terms providing replacements or valuable 
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additions.  Only concepts that have mapping relations 

to ICD-9-CM or CPT are considered in this review. 

 Changes of type-4 include all other new terms in 

the target taxonomies.  These are the terms that are 

least likely to be of interest but all new terms must be 

reviewed to ensure each subset contains the most 

recent SCT content.  Terms of type-4 may also 

contain new ideas for inclusion in subsets.  An 

important part of the management of the process is 

that all terms of type-4 are reviewed together once 

and considered as a group for inclusion in all subsets.  

This is a very large group and reviewing only once is 

a valuable time saver. 

 The data for all of the subsets is not presented 

here.    Of the 45 subsets, 24 were not changed at all.  

Table-1 presents a sample of change data for four 

subsets.

Subset Name # of 
Members

Type-1 
Changes 

Type-2 
Changes 

Type-3 
Change 

Critical Care - Disease Subset 558 3 3 137 

Neurology - Disease Subset 367 4 2 185 

Gastroenterology - Procedure Subset 185 6 4 3

Neurosurgery - Procedure Subset 327 1 1 7

   Table 1: Changes in selected subsets 

Subset Name Changes Made, 
Type-1 Changes 

Changes Made, 
Type-2 Changes 

Changes Made, 
Type-3 Changes 

Changes Made, 
Type-4 Changes 

Critical Care - Disease 

Subset
3 3 2 1

Neurology - Disease Subset 4 1 0 1

Gastroenterology - 

Procedure Subset 
6 2 2 1

Neurosurgery - Procedure 

Subset
1 1 0 2

   Table 2: Changes made to selected subsets based on type 

Data from Table-2 demonstrates how this 

approach focused the update tasks.  The review of 

each subset is limited to a controlled number of 

review tasks that are specific to the subset.  

 Changes of type-1 always result in a 

corresponding action (Tables 1 and 2).  Changes of 

type-1 break the rules of the subsets so they must 

result in a change. 

 Changes of type-2, type-3, and type-4 are new 

terms.  Changes of type-2 are new terms on the 

concepts that have a term already in a subset.  Of the 

14 candidates 7 were added to the subsets.  The 

percentage of type-3 changes added to the subsets is 

much smaller.  These are terms on descendents of 

concepts already in the subsets.  They are added at a 

much lower rate because modelers consider them too 

specialized for the subsets. 

Table-2 also demonstrates that Type-4 changes 

are important.  They add valuable new content to the 

subsets.  The percentage of added terms here is low 

as would be expected since these terms are on 

concepts that are not in the subsets or their 

descendents.  There is pressure to keep the subsets 

tightly defined to a core group of diagnoses and 

procedures. 

The update task for the HLI MSS has been 

broken into a series of specific tasks and one large 

task (type-4).  In this release, January 2007, of SCT 

there were over 3000 new concepts and 3400 new 

terms on existing concepts as well as 6500 concepts 

and terms retired.  Thus despite the large number of 

changes that occurred in SNOMED CT in this past 

release, only a small number of changes actually 

affected the subsets, limiting the amount of review 

required. 

Discussion
 Development of any data model requires time 

and resources as part of a pre-production effort.  
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Updates are post-production and under the additional 

constraint that updates must be finished in a timely 

fashion so that new production data is available as 

soon as possible. 

We present a strategy here for the maintenance 

of SCT subsets based on the experience of 

maintaining the Medical Specialty subsets.  These 

strategies can be adapted to any subset or mapping 

created with SCT or other terminologies.  The basic 

premise is that it is not feasible to review all entries 

in all subsets after each new SCT release.  Thus, we 

identified the types of changes that occur in SCT that 

would be more relevant to the subsets.  These ‘units’ 

of change are then ranked in order of importance.  

Automated processes are employed whenever 

possible followed by manual review of the changes 

when necessary.  The SCT hierarchies are also 

leveraged to allow for identification of possible new, 

more specific terms to be included in the subsets.   

Similar strategies can be used to update 

mappings to and from SCT as well.  As in the case 

for subsets, a set of requirements defines the rules 

used to create the mappings.  Many of the same 

change types described above that affect subsets also 

may affect mappings as well.  But, in addition to 

changes in SCT, consideration needs to be given 

toward similar changes in the other terminology 

being mapped to or from SCT.  For example, a 

mapping between ICD-9-CM and SCT needs to be 

updated for changes to ICD-9-CM as well as SCT.  

Therefore, evaluation for other change types 

particular to the non-SCT terminology need to be 

considered.  Modelers then need only review a 

portion of the maps that are affected by the changes.  

In the case of various mapping projects that HLI has 

performed, these reviews usually only include 

hundreds of concepts instead of tens of thousands. 

Changes to medical domains in the real world 

define the requirements for medical terminologies 

such as SNOMED CT.  New terms that are added to 

SNOMED CT to meet these requirements. This paper 

discusses how HLI manages these changes in the 

MSS  There will always be cases where the medical 

world moves faster than the terminology. SNOMED 

CT provides a mechanism for post-coordination and 

extension to fill these gaps.  HLI however has 

decided, as a rule, that the Medical Specialty Subsets 

only use pre-coordinated concepts.  HLI does make 

submissions to the International Healthcare 

Terminology Standards Development Organization 

(IHTSDO) whenever a new concept is required to fill 

a gap between the medical domain and the 

terminology.  Using the HLI framework MSS users 

can make additions and deletions to their local copy 

of the MSS to account for local conditions. 

As SCT becomes more widely used, managing 

its changes and effects on content based on SCT will 

be critical. Using efficient processes such as those 

identified here will help manage SCT changes. 
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ABSTRACT 

The Clinical Data Repository / Health Data 
Repository (CHDR) project is a combined effort of 
the Department of Veterans Affairs (VA) and the 
Department of Defense (DoD) to exchange clinical 
information between our Electronic Health Records 
(EHR). CHDR exchanges standardized, computable 
data, as opposed to textual data that is only human 
readable. CHDR utilizes mediation terminologies for 
health data exchange.  For allergy reactions data, 
CHDR uses SNOMED CT in conformance with  
Health Information Technology Standardization 
Panel (HITSP) recommendations. This paper reports 
how we implemented this solution. 

Business rules for mapping allergy reactions were 
established jointly. Each agency independently 
mapped its legacy data to the same  version of 
SNOMED CT. CHDR has since been implemented in 
seven locations where VA and DoD have joint 
patient care environments. Statistics on actual patient 
data from February-June 2007 showed a 74-99% 
mediation success rate for allergy reactions data. 

Examination of mediation failures exposed issues 
related to mapping and SNOMED CT concept 
modeling. In addition, we emphasize the significance 
of adherence to a detailed terminology mediation 
strategy, desirability of a standard SNOMED CT-
based subset for allergy reactions, and the creation of 
this subset for publication and distribution.

INTRODUCTION 

The President has ordered Federal agencies to 
promote improved healthcare quality and efficiency 

through secure and standard-based data exchange1. 
When clinicians exchange data, interoperable 
meaning is possible because clinicians share 
structures of clinical practice and familiar clinical 
language2. Similarly, meaningful electronic data 
exchange requires a shared structure for transmission 
and a common electronic vocabulary3, which yields 
Computable Semantic Interoperability (CSI)4. CSI 
makes order checks and electronic alerts possible 
across institutions, and is an essential component of a 
longitudinal EHR that protects patient safety.  

The CHDR project is a Congressionally-mandated, 
combined effort which aims to exchange 
standardized, computable data, as opposed to textual 
data that is only human readable. Computable data 
exchange enables “semantic interoperability” and 
permits utilization of electronic decision support 
tools on the sum of local and remote data at either 
agency6. CHDR currently exchanges pharmacy and 
allergy data elements and the agencies are working to 
share laboratory data elements by the end of fiscal
year 2008.   

CHDR has informed the Health IT Standards Panel 
(HITSP) that designates interoperability standards for 
EHRs.  VA and DoD use different internal data 
standards for allergies, and under CHDR utilize a 
common, HITSP-specified mediation terminology.  
CHDR exchanges pharmacy, drug allergens, and 
allergy reactions, and will soon exchange laboratory 
(chemistry/hematology) data.  CHDR exchange of 
comprehensive pharmacy information7 and drug 
allergy reactant information8 have been well 
described.  
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The CHDR strategy for exchange of allergy reactions 
(signs and symptoms) data uses SNOMED CT, in 
conformance with Consolidated Health Informatics 
(CHI) and now HITSP recommendations. We now 
report how VA and DoD have used SNOMED CT 
successfully as a mediation terminology, and describe 
the results.   

METHODS 

Initial work for allergy reactions under the mediation 
approach included the commitment at each agency to 
normalize legacy terms, using a list of centrally 
maintained concept terms9. Allergy reactions were 
comprised primarily of signs and symptoms, but 
could also include disorders or clinical conditions 
attributable to exposure to a drug reactant. Each 
agency mapped its legacy allergy reactions data to 
SNOMED CT10. The four-part terminology 
mediation strategy was outlined as follows11: 

1. Select a mediation terminology compliant 
with CHI/HITSP standards (if possible).  

2. Map each agency’s terms to concepts within 
the mediation standard. 

3. Exchange the mediation codes. 
4. Coordinate content maintenance plans. 

Table 1 shows the CHI standard terminologies and 
releases designated for the four domains at the start 
of the CHDR project.  

Business rules for mapping allergy reaction legacy 
terms to SNOMED CT concepts were developed 
jointly12.  For example, SNOMED CT hierarchies 
were prioritized in order of preference for mapping as 
follows: 1) Findings, 2) Disorders, 3) Morphologic 
abnormality, 4) Observable entity, 5) Context 
Dependent Category.  Mappings from specific to 
more general terms (and vice versa) were avoided, 
because of the bidirectional nature of the data 
exchange. For instance, mapping “nasal burning” to 
“burning sensation of mucous membrane (finding)” 
creates either a loss of the clinical detail “nasal” 
when translated (for an outbound message), or forces 
the translation of a general term “mucous membrane”
to a specific one--“nasal”--(for an inbound message). 
Local terms not found in SNOMED CT were 
collected for potential submission to the SNOMED 
development organization.  Other mapping rules 
governed misspellings, qualifiers, synonyms, 
ambiguous terms, and outdated terms.  

Table 2 shows a sample of VA allergy reaction terms 
with their VA unique identifiers (VUIDs) and 
SNOMED CT mappings.  

Once mapping rules were established, terminologists
at each agency manually mapped allergy reaction 
terms to SNOMED CT. VA used Apelon’s 
TermWorks tool and SNOMED’s CliniClue® 
browser, and DoD used the Terminology Service 
Bureau (TSB) and the CliniClue® browser.

Table 1. CHDR Domains and Designated Standards.

Domain Mediation Terminology (CHI Standard) 

Pharmacy RxNorm Jun 2005 

Drug Allergens UMLS Jan 2005AA 

Allergy Reactions SNOMED CT Jan 2005 

Lab (Chemistry & Hematology) LOINC 2.14 Jan 2005 

Table 2. VA Unique Identifiers, Allergy Reaction Text, and Corresponding SNOMED CT Mappings. 

VUID VUIDText SNOMED CT ID SNOMED CT Text 

4637123 BLISTER 339008 
Blister of skin AND/OR mucosa 
(finding) 

4543527 ORTHOSTASIS 271648003 
Postural drop in blood pressure 
(finding) 

4696326 ASEPTIC NECROSIS OF BONE 398199007 Aseptic necrosis of bone (disorder) 
4538635 RASH 271807003 Eruption of skin (disorder) 
4538640 SEIZURES 91175000 Seizure (finding) 
4539274 NOSEBLEED 249366005 Bleeding from nose (finding) 
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For mapping validation of allergies terms (both 
reactions and reactants), two reviewers conducted 
three separate reviews (10 hours each for a total of 60 
experts’ hours) and identified various discrepancies 
in about 5% of the total number of terms. All 
discrepancies were corrected13. An independent 
review of concepts common to both agencies was 
performed to ensure accurate translation and 
calculate expected mediation success rates14. See 
Table 3.  

Terminology “translation” and “mediation” are 
described as follows by Bouhaddou et al.: 
   
“The mediation success rate defines the percentage of 
data in one system that is understood and computable 
by the other system. For each direction of the data 
exchange, inbound or outbound, there is a different 
mediation success rate. For mediation to succeed, two 
translations have to be successful. First, the source 
agency has to translate from its vocabulary to the 
mediation terminology. Then, the target agency has 

to translate from the mediation terminology to its 
native vocabulary without loss of meaning15.” 

Mediation success rates are calculated by multiplying 
the translation success rates of each agency. When 
coded mediation fails, the CHDR project exchanges 
allergy reaction data as text without a mediation 
code.  

RESULTS 

Terminology translation and mediation statistics were 
compiled for allergy reactions data during a 5-month 
period in 2007. The numbers of translation and 
mediation attempts fluctuated from month to month, 
but generally showed an increasing trend as the 
project was implemented at additional sites over the 
5-month timeframe. Table 4 shows translation and 
mediation success rates for allergy reactions sent 
from VA to DoD. Table 5 shows  statistics for allergy 
reactions sent from DoD to VA. Overall, mediation 
success rates varied from 74% to 99%.  

Table 3. Common and Unique Allergy Reaction Concepts Determined by Each Agency Mapping to 
SNOMED CT. 
Agency Total Common Terms Mapped Terms Unique to Each Agency Unmapped Terms 
VA 346 299 25 (7%) 22 (6%) 
DoD 456 299 47 (13%) 110 (24%) 

Table 4. VA-to-DoD Mediation Statistics for Allergy Reactions, Feb-June 2007.*  

VA-to-DoD February March April May June 

Total VA-to-SNOMED CT translation attempts 168 193 338 959 502

Translation failures (VA-to-SNOMED CT) 4 0 1 13 1

Total VA allergy reactions sent to DoD 164 193 337 946 501

Translation Success Rate: VA-to-SNOMED 
CT 98% 100% 100% 99% 100%

Total allergy reactions received by DoD 164 193 337 946 501

Translation failures (SNOMED CT-to-DoD) 17 17 34 121 5

Total VA allergy reactions sent to DoD CDR†
147 176 303 825 496

Translation Success Rate: SNOMED CT-to-
DoD 90% 91% 90% 87% 99%
MEDIATION SUCCESS RATE: VA-to-DoD 88% 91% 90% 86% 99%

*Yellow areas designate translation services performed by VA. White areas designate translation services performed 
by DoD. †CDR=Clinical Data Repository. 
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Table 5. DoD-to-VA Mediation Statistics for Allergy Reactions, Feb-June 2007.*  

DoD-to-VA February March April May June 

Total DoD-to-SNOMED CT translation 
attempts 1,509 1,788 2,025 3,521 4,030

Translation failures (DoD-to-SNOMED CT) 306 467 432 432 107

Total allergy reactions sent to VA 1,203 1,321 1,593 3,089 3,923
Translation Success Rate: DoD-to-SNOMED 
CT 80% 74% 79% 88% 97%

Total allergy reactions received by VA 1,203 1,321 1,593 3,089 3,923

Translation failures (SNOMED CT-to-VA) 1 0 8 11 69

Total DoD allergy reactions sent to VA HDR†
1,202 1,321 1,585 3,078 3,854

Translation success rate: SNOMED CT-to-
VA 100% 100% 99% 100% 98%
MEDIATION SUCCESS RATE: DoD-to-VA 80% 74% 78% 87% 96%

*Yellow areas designate translation services performed by VA. White areas designate translation services performed 
by DoD. †HDR=Health Data Repository.

Analysis of the causes of the mediation failures 
revealed the following issues, listed in order of 
frequency of occurrence: 

1. SNOMED CT concept modeling issues were 
exposed. For example, a search for 
“nosebleed” in SNOMED CT’s CliniClue® 
browser returns more than one option within 
the “finding” hierarchy: “bleeding from 
nose” vs. “nosebleed/epistaxis symptom.” 
Another example of a modeling issue: the 
“Situation with Explicit Context” hierarchy 
was not addressed in the original VA/DoD 
mapping rules, as this hierarchy evolved 
within SNOMED CT after the initiation of 
the mapping. 

2. New legitimate allergy reaction terms were 
added independently within each agency, 
which led to mediation failures in the time 
interval between synchronization and 
updating of each agency’s files.  

3. Maintenance and versioning issues emerged 
when SNOMED CT released new versions 
with new concept statuses (e.g., 
“erroneous”, “limited”, “duplicate”, 
“ambiguous”) during the project. If agency 
updates were not synchronized, mediation 
failures would result. 

4. Allergy reaction concepts and terms were 
sometimes deemed appropriate by one 
agency but not the other. For example, the 

concept “systemic disease” was used at one 
agency, but the other agency felt this term 
added no valuable information about an 
allergic reaction and did not include it in its 
list of selectable reactions for use by 
providers.  

5. Divergent approaches to SNOMED mapping 
existed between VA and DoD, despite 
shared business rules. For instance, 
“hypertension” was mapped to “finding of 
increased blood pressure (finding)” at one 
agency, and to “Hypertensive disorder, 
systemic arterial (disorder)” at the other.  

DISCUSSION 

We begin with a list of lessons learned.  

1. Mapping rules must always be tailored to the 
specific purpose of the mapping. These rules may be 
influenced by non-terminological issues, such as the 
potential for the entire message to fail if one 
component fails. We must recognize that mappings 
are often purpose- or use case-driven, as well as built 
by semantic nuances of context.   

2. Even with established rules in place, there is a 
clear need for continued communication between 
agencies. We were unable to discern any major 
consistent reason for the mapping rule violations. 
One possibility is that VA and DoD initially used 
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different mapping tools. Another is that the process 
of finding the correct map for a term is variable and 
influenced by syntax and linguistic features of the 
search engine. In several cases, the Clue browser 
yields an apparently correct result (for example, a 
search for “orthostatic hypotension” returns 
“orthostatic hypotension (disorder)”) but the term is 
located in the disorder hierarchy, rather than the 
findings hierarchy (to be used in preference if 
possible). It may not be immediately apparent that an 
alternative mapping exists (“postural drop in blood 
pressure (finding)”) in another hierarchy. The clinical 
knowledge, background, and familiarity with 
SNOMED hierarchies and features of CliniClue® 
also are likely to influence search results. Ideally, a 
common team, process, and toolset would be used to 
produce the mapping. Perhaps the mapping could 
become a service of the Standards Development 
Organization, as is the case with RxNorm. 

3. SNOMED CT modeling issues were probably the 
most difficult to address, as these require a 
sophisticated knowledge of concept modeling and of 
the evolution of SNOMED hierarchies over time. 

4. Maintenance plans for using mediation 
terminologies need to include specific plans for 
synchronizing updates to the standard reference 
terminology, in this case SNOMED CT, and also for 
synchronizing updates to each agency’s mapping file.  

A significant outcome of this project is the generation 
of a new, unique SNOMED CT subset specific for 
Allergy Reactions (signs and symptoms) which could 
potentially be submitted for inclusion in SNOMED 
CT as an official subset. It could also be published 
and shared among federal agencies and non-federal 
partners.  

In December 2007, HITSP designated the VA/Kaiser 
Permanente (KP) Problem List subset (16,430 
entries) as the recommended standard for allergy 
reactions, a departure from previous CHI 
recommendations to use the VA/DoD Allergy 
Reactions subset (864 entries)16. While many of the 
VA/DoD Allergy Reactions terms are contained 

within the Problem List subset, use of the Problem 
List subset to record allergy reactions (signs and 
symptoms) may prove problematic, as is the case 
whenever data is used for a purpose other than that 
originally intended. Consider the terms “circumoral 
paresthesia (finding)” and “edema of pharynx 
(disorder).” These terms are appropriately found 
within the VA/DoD Allergy Reactions subset, but not 
within the VA/KP Problem List subset. The sheer 
size and complexity of the Problem List subset, 
compared to that of the Allergy Reactions subset, 
may unnecessarily complicate data entry for 
providers and result in unwanted entry of 
inappropriate terms as Allergy Reactions. The 
smaller subset could enable more precise data 
constraints and greater computing speed, without 
sacrificing data integrity. Communication with 
HITSP is ongoing regarding this issue. We propose 
that a new study be undertaken to evaluate the 
VA/KP Problem List and compare it to the VA/DoD 
Allergy Reaction subset, documenting content gaps, 
areas of overlap, and suitability for use as a 
mediation terminology. 

In conclusion, we point out that the expense of 
mapping VA’s and DoD’s legacy terms (and 
maintenance of same) was relatively substantial—
even  for the limited list of Allergy Reactions. As 
CHDR expands to include more VA and DoD sites, 
the terminology maintenance requirements will 
continue. 

Adopting the HITSP standard internally as a 
representation for allergies and reactions would be a 
more efficient method of working toward true 
semantic interoperability. Using a phased approach, 
legacy terms can be mapped to the standard, 
presented for adoption by the Standards Development 
Organization (SDO), and eventually migrated to the 
standard  representation itself with deprecation of 
invalid legacy terms.  

The use of mediation terminologies for computable 
data exchange is a dynamic and evolving process. It 
is prone to pitfalls, but is an effective, practical 
method for advancing the goal of semantic 
interoperability. 
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As industrial, governmental, and academic agencies 

place increasing emphasis on translational research, 

biomedical researchers are now faced with entirely 

new challenges in regards to both biomedical data 

integration and knowledge discovery. There is now 

both a strong need and a tremendous opportunity to 

apply translational bioinformatics to address the 

fundamental challenges in integrating the vast bodies 

of -omics and clinical data. Here we report on our 

preliminary work in utilizing SNOMED-CT as both a 

tool for translational data discovery, and a major 

component in a framework for the large-scale 

integration of gene expression microarray data and 

clinical laboratory data.  Annotations from 

microarray experiments in NCBI GEO were mapped 

to SNOMED-CT terms using UMLS, and these 

mappings were joined to clinical laboratory data 

using ICD9CM to SNOMED-CT mappings within 

UMLS.  We find that microarray experiments 

characterizing 211 distinct diseases can be mapped 

to clinical laboratory data measurements for 13,452 

distinct patients.  We maintain that this work 

represents critical first steps in providing a 

foundation for large-scale translational data 

integration, and underlines the important role that 

controlled clinical terminologies, such as SNOMED-

CT, can play in addressing such problems.

INTRODUCTION

Our ability to generate high-quality biomolecular data 
has advanced at considerably faster rate than our 
ability to investigate the data generated.  This 
imbalance, driven primarily by rapid advances in 
high-throughput biological data acquisition 

technologies and plummeting per-experiment costs, 
has created an entire spectrum of informatics
challenges that are, in many instances, as intangible 
and complex as the fundamental biological questions 
that these technologies were designed to address.  As 
a consequence, our ability to formulate and 
investigate important biological and medical 

questions is currently limited by our ability to 
manage and integrate the profusion of biomedical 
data.  

Problems in data integration are moving towards the 
forefront of biomedical research, driven foremost by 
the sheer diversity of measurement technologies now 

available, and the tremendous volumes of such 
measurements finding their way into the public 
domain.  The situation is further complicated by the 
fact that the majority of the public biomolecular data 
is annotated using unstructured free-text, making it

difficult to discern the various biological and medical 
contexts of the data in an automated fashion.  In 
previous work we demonstrated the feasibility of 
using controlled terminologies and straightforward 
text-mining techniques to elucidate clinical, 
environmental, and phenotypic contexts from free-
text annotations associated with public microarray 

data1, 2.  The establishment of experimental context is 
critical to linking genes to environment, phenotype, 
and ultimately medicine.   

While most major types of biomolecular data can be 
found in the public domain, it is traditionally difficult 
for researchers to gain access to clinical data.  This is 

unfortunate as the data generated on a daily basis by 
hospitals and clinicians is perhaps the richest source 
of phenotypic biomarker data currently available.  
Fortunately modern Electronic Health Record (EHR) 
systems such as the Stanford Translational Research 
Integrated Database Environment (STRIDE)3 and the 
University of Virginia Health System Clinical Data 

Repository (CDR)4 grant institutional researchers 
access to large volumes of de-identified, quantitative 
clinical data in digital form.  In recent work, we 
demonstrated the utility in applying bioinformatics 
methods to quantitative clinical data to draw new 
inferences about disease severity5, and elucidate 
novel biomarkers6.    

Genome Wide Association studies have revealed that 
for many complex diseases, the pathogenesis of the 
disease may be facilitated by relatively minor 
changes across a large number of genes interacting 
through as of yet poorly understood mechanisms7.
These findings have therefore highlighted the 

importance of linking biomolecular data with 
phenotypic quantifications in order to uncover the 
full complexity of disease etiology.  Recent work in 
integrating these two data types has offered new 
insights into disease etiology and pathology with 
direct clinical implications.  Segal and colleagues 
correlated imaging traits from computed tomography 
(CT) images of liver cancers with gene expression 
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data to reconstruct global expression signatures in 
cancer tumors that are linked to diagnosis, prognosis 
and treatment8.  A number of studies have 
demonstrated the utility of patient microarrays in 

identifying gene expression patterns linked to disease 
diagnosis9, subtypes10, 11, outcome12, and treatment13, 14.
As significant as the aforementioned findings are, 
their underlying methods are limited by the fact that, 
in all instances, they require that the biomolecular 
and clinical data be derived from the same patient.  
Given the current high costs and logistical 

complexities involved in acquiring patient data in a 
clinical setting, it would be prohibitively expensive to 
scale the same approaches to address the broad 
spectrum of human disease.  Furthermore, such an 
approach implicitly eschews the great wealth of 
public biomolecular data readily available.

A major problem in integrating clinical and 
biomolecular data derived from disparate sources is 
to identify attributes by which they can be 
appropriately joined.  This task is complicated by the 
fact that the majority of biomolecular data is 
annotated around the concepts of genes and gene 
products, whereas clinical data is centered on the 

concept of a patient.  We find one concept shared 
among both clinical data and vast amounts of 
biomolecular data, and that is the concept of a 
disease.  Therefore it is possible to integrate 
anonymous biomolecular data characterizing an 
aspect of a particular disease state with quantitative 
clinical data derived from patients being treated for 

the same disease. 

Central to this approach is the need for a 
comprehensive controlled disease terminology 
through which the biomedical and clinical data is 
joined in a systematic fashion.  In general, we would 
want this disease terminology to maximize three 

primary criteria: coverage, defined by the number of 
unique disease terms defined; expressiveness, which 
is the richness of relationships between disease terms; 
and resolution, which is the level of detail offered by 
the terminology structure.  A deficiency in any of 
these could negatively impact the amount and 
diversity of data that could be integrated, and 

potentially limit the types of analyses that can be 
performed on the data downstream.  There are a 
number of well-established disease terminologies in 
active use that satisfy the above criteria to varying 
degrees. Chief among these are the International 
Classification of Diseases (ICD), Medical Subject 
Headings (MeSH), and the Systemized Nomenclature 

of Medicine-Clinical Term (SNOMED-CT).  Each of 
these is suited for data integration, yet each of them 
present particular pros and cons.

The ICD terminology, evolved from a lineage that 
spans more than 100 years, is the most widely 
utilized disease terminology, with widespread 
adoption among a large number of major healthcare 

providers, the U.S. Federal Government, as well as 
the World Health Organization.  Consequently, the 
majority of clinical data is codified using ICD codes.  
Unfortunately the ICD is poorly suited for data 
integration as the approximately 14,000 unique terms 
codified by ICD is quite small compared to other 
terminologies.  Furthermore, the ICD is more a 

compendium of diagnosis and procedure codes, as it 
lacks any significant hierarchical or relational 
structure.  

MeSH, which is used primarily for the purpose of 
indexing publications, is only slightly larger than 
ICD in terms of size with more than 22,000 unique 

terms. However, the design of MeSH is much more 
structured and diverse compared to ICD.  MeSH 
terms are arranged into a hierarchy of 14 distinct top-
level categories that organize terms by Anatomy, 
Disease, Chemicals and Drugs, and Geography 
among other things.  MeSH also contains a set of 
qualifier terms that can be used to narrow the 

specificity of a descriptor term (e.g. 
"Measles/epidemiology").  While MeSH possesses 
many of the attributes desirable for translational data 
integration, its attributes modest in comparison to
those of SNOMED-CT. 

SNOMED-CT was born from a medical terminology 

lineage that traces back more than 75 years, and is 
currently in use by pathologists worldwide to perform 
precise classifications of human disease15, 16.  With 
more than 340,000 unique biomedical concepts 
organized into 19 relational hierarchies linked by 
more than 1.3 million relationships, it is by far the 
most expansive and expressive disease terminology 

in existence.  The sheer number of concepts coupled 
with the rich relational architecture in SNOMED-CT 
offers attributes superior to other disease 
terminologies.  For example, SNOMED-CT 
establishes that a clear cell carcinoma of the kidney is 
both a malignant tumor of the kidney and a malignant 

tumor of the retroperitoneum.  The ICD version 9  

(ICD-9) simply asserts that a malignant neoplasm of 

the kidney is a malignant neoplasm of the 

genitourinary organs, which is a much coarser 
designation.  Therefore assert that SNOMED-CT is 
currently the best-suited terminology for integrating 
biomolecular and clinical data by disease.

In this study we investigate the feasibility of using 
SNOMED-CT to integrate gene expression data from 
a public microarray repository with de-identified 
clinical laboratory data obtained from a hospital EHR 
system by disease.  We propose that SNOMED-CT is 
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well suited for this approach as it is the largest 
disease vocabulary currently available.  We evaluate 
the effectiveness of this approach based on the extent 
of data successfully joined. 

METHODS

A high level representation of the data integration 
approach is detailed in figure 1.  The microarray 
experiment data was obtained from the NCBI GEO 
FTP site (downloaded 11/27/2007), which was parsed 
into a relational structure and stored in a MySQL 
database.  The de-identified clinical laboratory data 

was obtained from the Lucile Packard Children’s 
hospital via STRIDE as delimited text files.  UMLS 
release 2007 AA was used as the vocabulary source.   
The integration steps were performed as follows.  

Figure 1 – Schematic representation of the 

approached used to join gene expression data with 

clinical laboratory data.  Annotations from GDS are 

first mapped to UMLS CUIs that map to at least one 

SNOMED CT term, and the ICD9 CM codes from the 

patient records are mapped to SNOMED CT terms 

using the relational architecture of UMLS.

Mapping microarray experiments to diseases

Clinically relevant microarray data was identified 
using a previously described method17.  In brief, we 
queried the NCBI Gene Expression Omnibus (GEO)18

to obtain all GEO DataSet experiments with 

associated PubMed identifiers.  For each PubMed 
identifier we obtained the associated MeSH headings 
using NCBI eUtils.  Each of the MeSH headings was 
mapped to a UMLS CUI using the MRCONSO table.  
Using the MRSTY table, we obtained the semantic 
type identifier (TUI) for the mapped CUIs, and if any 
MeSH term is found to have a semantic type among 

Injury or Poisoning (T037), Pathologic Function 
(T046), Disease or Syndrome (T047), Mental or 
Behavioral Dysfunction (T048), Experimental Model 
of Disease (T050), or Neoplastic Process (T191) then 
the associated experiment is determined to be 
disease-associated and therefore clinically relevant.  
This resulted in the positive identification of 737 

disease-associated experiments. 

The disease-associated experiments are investigated 
by a second previously described text-mining 
technique that examines GEO DataSet (GDS) subset 
annotations to identify when a disease state is being 
compared to a normal control state2.  GDS are higher-

level representations of microarray experiment in 
which samples are organized into biologically 
informative collections known as subsets. The 
subsets are representative of the experimental axis 
under examination (figure 2). An attempt is made to 
map the free-text annotations associated with the 
GDS subsets to SNOMED-CT disease terms using 

UMLS concepts.  These mappings are subsequently 
manually reviewed for accuracy, where erroneous 
codifications are corrected if found.

Figure 2 – Example of microarray data subsets 

defined by GEO GDS experiments.

Mapping patient laboratory data to diseases

Clinical laboratory data for pediatric patients from 
the Lucile Packard Children’s Hospital was obtained 
digitally from the STRIDE system.  All of the 

laboratory measurements were received pre-encoded 
with ICD-9 codes.  These ICD-9 codes were mapped 
to SNOMED-CT codes by first querying UMLS to 
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find the CUI identifier associated with the ICD-9
code.  We then took advantage of the inter-
terminology mappings provided by the UMLS 
(MRMAP) table to translate the ICD-9 codes into 

SNOMED-CT concepts using associated CUIs.

Joining the microarray and patient lab data by 
disease

The GDS subsets with mappings to SNOMED-CT 
disease CUIs were joined with the clinical laboratory 
data using the UMLS CUIs derived from mapping 

the ICD-9 codes to SNOMED-CT terms using the 
UMLS MRMAP table. Of the 238 unique disease 
concepts mapped to the microarray data, 90% were 
mapped to quantitative clinical laboratory data for at 
least one patient.    

RESULTS

Using automated methods, were able to identify 737 

GDS microarray experiments in NCBI GEO related 
to human disease.  The GDS subsets were 
investigated for terms related to UMLS concepts that 
were linked to a SNOMED-CT disease term, 
resulting in the identification of 238 unique human 
disease concepts.  In total, 29,451 microarray samples 
were codified with SNOMED-CT disease identifiers.  

Note however that method was restricted to include 
only those GDS for which a disease and normal 
control subset could be identified.  This restriction 
ensures that a disease vs. normal vector of change can 
be extracted from the data to establish a baseline 
disease expression signature for downstream
analysis.

Disease� SNOMED 
Terms�

ICD9CM 
Terms� Ind�

Allergic 
asthma� 1� 1� 2240�

Asthma� 1� 1� 2240�

Allergic 
asthma NEC� 1� 1� 2240�

Esophageal 

Reflux 1� 1� 1895�

H. pylori 
infection� 1� 2� 1322�

Colitis� 1� 1� 1299�

Primary 
Hypertension� 1� 1� 1017�

Hypertension� 1� 1� 1017�

Obesity� 2� 1� 1010�

Type 1 
diabetes� 1� 1� 843�

Table 1 – Top ten data mappings ordered by the 

number of patient lab records matched.  

We retrieved quantitative clinical laboratory data 
representing diagnostic biomarkers for 49,414 
patients across 9,997 distinct diagnosis codes.  These 

codes mapped to 20,049 distinct UMLS CUIs.  It is 
interesting to note that in mapping ICD to UMLS we 
find that twice as many UMLS concepts as ICD-9
terms are found.  This likely resulted from the fact 
that ICD-9 is generally a more high-level 
terminology, and therefore terms related to rare 
genetic disorders, for example, may only be 

represented by one ICD-9 code, whereas UMLS may 
allow for more fine-grained attribution of specific 
rare genetic disorders.

In joining the ICD-9 disease codes from the clinical 
laboratory data to the microarray data using 
SNOMED-CT disease codes, we find that 211 of the 

unique disease concepts annotating the microarray 
data can be mapped to clinical laboratory data.  In 
total, clinical laboratory data for 13, 452 patients was 
mapped to SNOMED-CT disease codes that were 
used to annotate the microarray GDS experiments.  
Table 1 shows the top diseases by the number of 
patients mapped.  

Disease� SNOMED 
Terms�

ICD9CM 
Terms� Ind�

Follicular 
lymphoma� 4� 3� 136�

Hamman-Rich 
syndrome� 4� 2� 18�

Mycobacterial 
infection� 3� 2� 26�

Mixed 
hyperlipidemia� 3� 2� 90�

Hepatoma� 3� 2� 67�

Fetal alcohol 
syndrome� 3� 1� 10�

Diabetic 
nephropathy� 3� 2� 30�

Megakaryocytic 
leukemia 2� 2� 125�

Acute monocytic 

leukemia 2� 1� 7�

Status epilepticus 2� 1� 84�

Table 2 – Top ten data mappings sorted by the 

number of SNOMED-CT terms matched.

As evident from the data listed in table 1, there are 
cases in which distinct SNOMED-CT terms will map 
to the same ICD-9 term.  To explore the ambiguities 
of mapping terms between the SNOMED-CT and 
ICD-9 using CUIs, we investigated the overall 

pattern of the mapping cardinalities. Table 2 shows 
cases in which a single UMLS CUI maps to multiple 
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SNOMED-CT terms.  This could indicate that there 
is some degree of ambiguity in the SNOMED-CT to 
ICD-9 UMLS mappings, and perhaps a dampening of 
SNOMED-CT term resolution when using UMLS 

concepts.

To better understand the influence of UMLS CUI 
definitions with regards to source identifier 
consolidation, we calculated summary statistics for 
several terminologies with UMLS and restricted the 
results to CUIs representing a disease.  The summary 

statistics are listed in table 3.

Source Total disease 
concepts

Identifiers per 
concept

SNOMED-CT 74,611 1.4

ICD-9-CM 12,631 1.1

NCI 12,257 1.0

MeSH 6,613 1.0

Table 3 – Summary statistics for select disease 

terminologies sorted by total number of disease 

concepts (CUI).

DISCUSSION

The profusion of large public data repositories of 
genome-scale measures, coupled with the pressing 
imperative to translate such data into medicine, has 
precipitated the need to develop informatics tools and 

techniques for integrating disparate forms of 
biomolecular and clinical data. The purpose of this 
investigation was to explore the feasibility of using 
SNOMED-CT for such integrative efforts.  We 
assessed the feasibility of SNOMED-CT as a 
translational joining factor by using it to integrate 
anonymous gene expression data from a public 

microarray repository with de-identified clinical 
laboratory data by disease.  

We find that SNOMED-CT is effective as a disease 
terminology for integrating these two types of 
biomolecular and clinical data. The cases in which 
microarray data could not be mapped to clinical 

laboratory data largely reflect the fact that only 
pediatric data was used.  The unmapped terms 
contain diseases such as Parkinson’s disease,
macular degeneration, Alzheimer’s disease and other 
diseases not generally found in children.  Other failed 
mappings represent relatively rare disorders, such as 
Yersiniosis and Luteoma.  Better mappings might be 

obtained by leveraging the relational structure of 
UMLS to map terms that are parent or child 
relationships to the disease terms.

The many-to-many and many-to-one SNOMED-CT 
to ICD-9 mappings using UMLS CUIs do present an 
interesting problem.  These could lead to ambiguities 

in the mappings such that a highly specific disease 
variant is mapped to a more generalized disease 
category.  This could have a negative impact on the 
downstream utilization of the integrated data.  The 

data in table 3 suggests that large source vocabularies 
like SNOMED-CT have been constrained and 
compressed by the smaller vocabularies within 
UMLS to the degree that original source vocabulary 
resolution is lost.  This may suggest and alternative 
strategy in which the biomolecular samples are 
labeled only with SNOMED-CT identifiers and the 

translation between SNOMED-CT and ICD-9 is 
performed outside of UMLS CUI constraints.  

There are several caveats in the interpretation of the 
results.  First off, the data sets were not generalized 
in that the clinical laboratory data only represented 
pediatric patients and the microarray experiments 

were limited to those in which a disease and a normal 
control distinction was evident.  Furthermore, this 
study offered only a focus on SNOMED-CT and did 
not apply the same techniques to the alternative 
disease terminologies mentioned to offer any 
quantitative comparison.  Although the investigation 
revealed that SNOMED-CT was capable of joining 

the two data types, it offers no statistical 
characterization of the joining to assess its overall 
quality and reliability.  Of course we also 
acknowledge that the text mining aspects of this 
approach are prone to errors, such as miscodings of 
the data.

The results demonstrate that current and future 
translational data integration endeavors can leverage 
existing clinical terminologies, such as SNOMED-
CT, to integrate clinical and biomolecular data types 
and shift valuable efforts to downstream discovery.  
Furthermore, this study provides support for the 
continued development and use of SNOMED-CT for 

translational data integration, and brings to light the 
importance inter-terminology mappings resources 
such as UMLS.  As demonstrated by our own work, 
and the work of others, the straightforward act of 
integrating data from the molecular and clinical 
worlds can have profound and direct impact on 
human health.  

Although our initial work focused on the integration 
of microarray data and patient lab data specifically, 
we are now working to expand the application of the 
underlying system to integrate additional data types.  
In order to integrate new forms of biomolecular data 
into our current framework we must develop 

improved text-mining methods to map the underlying 
experimental data to SNOMED-CT identifiers.  From 
the clinical perspective we will continue to integrate 
new data obtained from the STRIDE system and look 
to incorporate additional clinical data types as well.  
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We must also develop methods to test and improve 
the reliability of the clinical data, as hospital workers 
will inevitably miscode a small percentage of the 
data.  We must also account for the fact that the 

application of clinical codes is subject to a number of 
non-scientific influences, such as hospital billing 
policies, insurance companies, and pharmaceutical 
regulations.  Any future work in this area should also 
entail the development of statistical metrics to 
evaluate the joining terminology, such that a 
principled decision can be made to identify the most 

appropriate terminology for a particular integration 
scenario.  
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ABSTRACT

This paper describes a methodology for encoding 

problem lists used in general practice with SNOMED 

CT. Our intent is to help general practitioners to 

incorporate SNOMED CT into their existing 

Electronic Medical Record (EMR) systems with 

minimal disruption as a first step, thus allowing them 

to assess its impact prior to full-scale conversion. We 

started with 1,713 original unique terms that made 

up the problem lists from the general practice EMR 

used in the study. We ended with 1,468 unique 

concepts after two cycles of matching and revisions 

that led to 1,347 or ~92% successful matches. The 

remaining terms were revised to tease out modifiers 

or secondary concepts that could be used to provide 

equivalency through post-coordination. While 

skeptics of reference terminology systems often balk 

at their unwieldy size and complexity for local 

adoption, this study has demonstrated that, using our 

methodology, it is possible to create a manageable 

subset of SNOMED concepts for problem lists used 

in general practice with immediate tangible value.   

INTRODUCTION

The problem list is the keystone of the medical 
record. In general practice settings, the type of 
problems presented by patients can be quite diverse. 
Examples range from non-specific symptoms such as 
headaches with unknown cause, to a diagnosis of 
coronary disease that can be expressed in different 
ways such as heart attack and myocardial infarction. 
The choice of terms used in problem lists becomes an 
important design issue for the electronic medical 
record (EMR), since the level of granularity selected 
for defining the problems and the actual terms 
entered into the system can affect one’s ability to 
retrieve the information afterwards, thus impacting 
the overall quality of the EMR system. 

There have been many studies on the design and use 
of controlled terminology to encode the problem lists 
in EMR systems and their impact on practice [1-8]. 
Most of these studies are focused on large institutions 
involving a substantive number of clinical terms in 
order to accommodate the needs of a wide range of 
clinicians in the institution. For example in their 

study of diagnosis and problem lists in a 
computerized physician order entry system, 
Wasserman [9] reported that 88.4% of their 8,378 
clinical terms were found in SNOMED CT. With the 
addition of 145 site-specific terms they were able to 
achieve 98.5% overall content coverage. With the 
formation of the International Health Terminology 
Standards Organization (IHTSDO), the historical 
barriers to SNOMED CT related to cost and the 
proprietary nature of the product have now been 
removed, and national initiatives related to EMR’s 
are emerging to use SNOMED CT as a clinical 
terminology in several countries around the world.  

Despite such impressive development, the effort to 
adopt SNOMED CT in Canada has been minimal to 
date. There continues to be a concern especially in 
the primary care setting where most general practices 
are made up of small groups of practitioners, of 
whom few are equipped with an EMR. Critics often 
balk at the enormous size and complexity of 
SNOMED CT, considering it as too unwieldy and 
costly for local adoption and use. But a review of 
data collected from several sites by one author 
showed the number of codes needed to cover 
disorders of at least 1:100,000 occurrence would be 
under 5,000 [10]. Work is underway with IHTSDO 
and the WICC group of WONCA to finalize this list 
as a potential primary care SNOMED subset [11]. 

In this paper, we describe a methodology that we 
have developed based on an ongoing study to encode 
problem lists using SNOMED CT (July 2007 release) 
for a local general practice in Canada. The intent of 
this methodology is to enable general practitioners to 
incorporate SNOMED CT into their existing EMR 
systems within minimal disruption as a first step, thus 
allowing them to assess its potential impact prior to 
full-scale conversion. 

METHODS

Design and Setting 
For this study, we included all the problem list (PL) 
terms from the commercial EMR system used by a 
local general practice in British Columbia, Canada. 
This setting is typical of many general practices 
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across the country, which are made up of small 
groups of general practitioners working in a private 
medical office, mostly on a fee-for-service basis. The 
medical office in this study has four general 
practitioners who have worked as a group for 30 
years in a township with a population of 100,000 
located east of Vancouver, British Columbia. The 
practice has had 8 years of experience using an EMR. 
At least two of the practitioners record all of the 
information on their patients on a daily basis at the 
time of encounter or shortly thereafter. Laboratory 
and imaging results and consult reports from external 
sources – both electronic and on paper – are entered 
into the EMR either by the practitioners themselves 
or the medical office assistant.  

Matching Algorithms 
We applied four matching algorithms used in an 
earlier SNOMED CT to ICD-10 mapping project to 
find matching SNOMED concepts for each of the PL 
terms [12]. Three are lexical techniques for exact-
match, match-all and partial-match. The fourth is 
semantic matching that involves retrieving the 
current concepts based on historical relationships if 
the initial SNOMED concepts found were inactive. 
These algorithms are summarized in Table 1. 

Algorithm Explanation 
1. Exact match Exact string match where all words are 

same and in same sequence, including 
punctuation

2. Match all String match where all words are same but 
not necessary in same order; additional 
words allowed 

3. Partial match String match where one or more words is 
found

4. Semantic match For inactive concepts use historical 
relationships Was-A, Same-As, May-Be-A, 
Replaced-By to find current concepts 

5. Unmatched Assigned when no match is found 

Table 1. Matching algorithms used in this study 

Normalization Steps 
In addition to applying the matching algorithms to 
the original PL terms, we reran the algorithms after 
we normalized the PL and SNOMED terms to 
remove “noise” using the Unified Medical Language 
System (UMLS 2007 version) normalization steps, 
shown in Table 2a [13,14]. To improve matching, we 
expanded step-2 to remove both “stop words” and 
“exclude words” and SNOMED prefixes, shown in 
Table 2b. For step-5 we included the lookup and 
stemming methods to uninflect the phrase. The 
lookup method uses the UMLS SPECIALIST 
Lexicon’s inflection table with ~1 million entries, 
whereas the stemming method is a computational 
technique that reduces word variants to a single 
canonical form [15,16]. 

No Step Example 
1 Remove  

genitive
Hodgkin’s disease, NOS  Hodgkin 
diseases, NOS 

2 Remove stop 
words

Hodgkin diseases, NOS  Hodgkin 
diseases,

3 Convert to 
lowercase

Hodgkin diseases,  hodgkin diseases, 

4 Strip 
punctuation

hodgkin diseases,  hodgkin diseases 

5 Uninflect 
phrase

hodgkin diseases  hodgkin disease 

6 Sort  
words

hodgkin disease  disease hodgkin 

Table 2a. UMLS normalization steps [8, slide20] 

Matching PL Terms 
The process of matching the PL terms involved 
cycling through the matching algorithms one at a 
time to find the best candidate SNOMED CT 
concepts. For each algorithm we always began with 
the original terms, then the UMLS normalized terms, 
followed by the stemmed terms. During each cycle, 
we would review the candidate concepts found to 
determine if it was a match, and if so, what type of 
match it was based on the algorithm applied. When 
no matching concepts were found, we would label 
the term as unmatched. Our experience with the 
matching algorithms had been that, the sooner we 
could find a match in the cycle, the greater 
confidence we would have that the candidate concept 
is appropriate. The preferred order of matching 
selected is always exact first, then all, followed by 
partial. For exact-match and match-all if only 
inactive concepts are found then a semantic-match is 
done to find their corresponding current concepts 
through the historical relationships. 

Step-5 Explanation 
Stop
words

Frequent short words that do not affect the phrase: 
and, by, for, in, of, on, the, to, with, no, (nos) 

Exclude 
words

Words that may change meaning of the word but if 
ignored help to find a term otherwise missed: about, 
alongside, an, anything, around, as, at, because, 
before, being, both, cannot, chronically, consists, 
covered, does, during, every, find, from, instead, 
into, more, must, no, not, only, or, properly, side, 
sided, some, something, specific, than, that, things, 
this, throughout, up, using, usually, when, while 

SNOMED
Prefixes 

[X] – concepts with ICD-10 codes not in ICD-9 
[D] -  concepts in ICD-9 XVI and ICD-10 SVII 
[M] – morphology of neoplasm concepts in ICD-O 
[SO] – concepts in OPCS-4 chapter Z in CTV3 
[Q] – temporary qualifying terms from CTV3 
[V] – concepts in ICD-9 and ICD-10 on factors 
influencing health status and contact with health 
services (V-codes and Z-codes) 

Table 2b. Expanded UMLS normalization step-2 

Encoding the Problem Lists 
The process of encoding the problem lists extracted 
from the EMR followed these steps: (a) tabulating the 
frequency of occurrences for all of the original PL 
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terms; (b) cataloguing all of the unique words across 
the PL terms present; (c) examining all unique words 
and PL terms to identify and revise for acronyms, 
abbreviations, spelling variants and errors; (d) 
matching the PL terms to SNOMED CT concepts 
using matching algorithms described earlier; (e) 
producing detailed and summary outputs to show the 
type of matches found; (f) reviewing/verifying the 
matched concepts one term at a time for accuracy; (g) 
repeating steps (c-f) until no further matches could be 
found; (h) examine remaining partial-matches for 
post-coordination; (i) create an index table of all PL 
and matched SNOMED terms. As part of this study, 
we also explored navigating within the SNOMED 
hierarchy to examine how the super-types and 
relations could be used to improve the quality of 
recall using the matched SNOMED concepts.  

RESULTS

Summary of PL Terms and Matches 
A total of 7,833 PL entries were extracted from the 
EMR for this study. The majority of these entries 
were recorded by one practitioner over a 7-year 
period. Of these entries, there were 1,713 unique PL 
terms present. Based on the frequency distribution of 
the entries, the top 10 PL terms were hypertension, 
hypercholesterolemia, diabetes mellitus, hypothyroid, 
asthma, atrial fibrillation, gastroesophageal reflux, 
depression, congestive heart failure and chronic 
kidney disease. After the second cycle we had 1,296 
(88.23%) exact-matches where the PL terms are 
exactly the same as the SNOMED terms found. 
There were 51 (3.47%) match-all where all the words 
in the PL terms are present in the SNOMED terms 
but not necessarily in the same sequence. There were 
120 (8.17%) partial-matches where one or more 
words matched the SNOMED terms. Another 20 
(1.42%) SNOMED terms were found with semantic 
matches. Between the two cycles partially-matched 
terms were revised to tease out qualifiers and 
secondary concepts if present in order to explore 
post-coordination. A summary of the PL terms and 
the SNOMED matches found is shown in Table 3. 

Characteristics of Encoded PL Terms
In Table 4 we have examples of the frequently used 
PL terms with their SNOMED terms found by exact, 
all and semantic matches. Also shown are the 
matches after revision and post-coordination of the 
original and partially-matched PL terms. For most 
exact-matches we selected the preferred terms from 
SNOMED CT as they are identical or closest to the 
original PL terms, such as Atrial fibrillation. In some 
cases we chose the synonym terms, such as 
Hypertension instead of the preferred term which is 
Hypertensive disorder. For match-all and some 

partial-matches we selected the SNOMED terms that 
were closest to the PL concept involved, such as 
GERD gastro-esophageal reflux disease. For 
semantic matches we looked up the current concepts 
of the matched but inactive SNOMED terms through 
their historical relationships, such as Cirrhosis. For 
post-coordination we added qualifier and refinement 
terms to SNOMED concepts or combined those that 
are lexically closest to the original PL terms, such as 
Atrial fibrillation+Chronic, Kidney disease+Chronic, 
and Headache+Migraine. After the second cycle any 
remaining partial-matches were treated as 
unmatched. Initially there were eight PL terms not 
found in SNOMED CT. Five were spelling errors 
and were revised for the second cycle (e.g. 

hepatomegally  hepatomegaly); three were 
legitimate missing terms – vasculopath, pyocystitis 
and hypotestosteronemia, where we had to modify 
the PL term or tag as local extensions. Using these 
outputs we created an index table to link the PL 
terms to their matched SNOMED terms, shown in 
Table 5. Each row contains the PL-termId, conceptId, 
descriptionId, relationship-typeId match-type, and 
post-coordination-sequenceId. 

Description Frequency
No. of patients 2,894 

Total PL entries 7,833 

Total words in PL terms 16,455 

Unique words 1,764 

Longest word Hypercholesterolemia, 20 characters 

Median length 8 characters 

Most common word Hypertension, 585 times 

Matching
Algorithm 

Initial Cycle 
Frequency (%) 

2nd Cycle 
Frequency (%) 

Exact-Match 905 (52.83%) 1,296 (88.23%) 

Match-All 167 (9.75%) 52 (3.47%) 

Partial-Match 633 (36.95%) 120 (8.17%) 

Semantic-Match 49 (2.86%) 20 (1.42%) 

Unmatched 8 (0.47%) 2 (0.14%) 

Post-coordination Not done In-progress 

Total unique PL terms 1,713 1,468 
Table 3. Summary of PL terms and matches. For 

frequency %, once a match has been found it is not 

included as part of the next matching algorithm 

Revision of PL Terms 
Manual revisions were done on the 1,713 unique PL 
terms after the initial cycle. By selecting the PL terms 
that were not matched in SNOMED CT, we were 
able to identify entries that were misspelled, 
idiosyncratic local terms or ambiguous concepts. A 
number of spelling mistakes were corrected. The 
CliniClue Browser [17] was used to find matches for 
each term. A few terms were found in our problem 
lists but not in SNOMED CT. Some were local terms 
that needed to be reconsidered but there were also 
terms that would be submitted for inclusion in 
SNOMED CT. One example is “chronic kidney 
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disease” which seems to be the preferred term in 
common usage. Yet the closest SNOMED term is 
“chronic renal failure.” In this revision we also noted 
parts of some PL terms could be removed as 
qualifiers or modifiers, thus increasing the number of 
exact matches found. Examples include left, right, 
lower, midline, chronic, recurring, active, query and 
multiple. These modifiers seemed to be clustered 
around the concepts of time course, number, location 
and severity. We found 313 such instances in our PL 
terms. In another 89 instances we found post-
coordination of two SNOMED concepts produced a 
good match. 

Navigating the SNOMED Hierarchy 
As part of this study, we explored ways to navigate 
the SNOMED hierarchy to determine if it could 
improve one’s ability to retrieve related concepts. Of 
the 1,296 exact matches found for the 1,468 unique 
PL terms present, we selected a subset of 32 PL 
terms related to cardiovascular disorders for this 
analysis. First, we did frequency counts of these PL 
terms to show how often they were present in the 
EMR system. For each PL term present, we 
navigated up the hierarchy until we reached the 
super-type “49601007|Disorder of cardiovascular 
system.” We then pruned the tree to include only 
those concepts with a positive frequency count, but 
left their immediate super-types intact. This partly-
instantiated cardiovascular disorder hierarchy is 
shown in Figure 1. The value of this tree is that it 
shows the SNOMED concepts that are actually 
present in the EMR and how often they occur via the 
frequency counts based on the PL terms recorded. 
This tree can aide in the retrieval of relevant concepts 
recorded using different PL terms. For instance, by 
specifying the concept “56265001|Heart disease” in 
the query, one should expect to retrieve all sub-types 
under “5754005|Acute myocardial infarction” and 
“12026006|Paroxysmal tachycardia.” On the other 
hand, by specifying the concept “57054005|Acute 
myocardial infarction” in the query, the sibling 
concept “12026006|Paroxysmal tachycardia” should 
automatically be excluded.  

DISCUSSION

A proposed Methodology 
Drawing on the lessons learned from this study, we 
propose the following steps for general practitioners 
to encode problem lists from their EMR in SNOMED 
as a first step for review before full-scale conversion: 

1. Extract all PL entries from the EMR and tabulate 
the frequency of the PL terms present; 

2. Catalogue all unique words across the PL terms; 

3. Examine all unique words and PL terms to 
identify and revise for acronyms, abbreviations, 
spelling variants and errors; 

4. Match the PL terms to SNOMED concepts using 
the matching algorithms outlined in this paper 
(contact authors for copies of the algorithms); 

5. Create detailed and summary outputs to show the 
exact, all, partial and semantic matches found; 

6. Review matched SNOMED terms for accuracy; 
remove successful exact-match and match-all 
terms from further matching cycles; 

7. Repeat steps 3 through 6 for remaining partial 
matches until no further matches found; 

8. Post-coordinate remaining PL terms with 
qualifier, refinement and combined concepts; 

9. Create a pruned PL hierarchy tree showing all 
concepts with positive frequency counts and 
immediate super-type concepts; 

10. Create index table containing unique identifiers 
for the PL and matched SNOMED terms. 

Implications 
Post-coordination is thought to be a feature that is 
difficult to implement. Yet based on the small 
number of SNOMED concepts used in this study to 
post-coordinate our PL terms, it seems feasible to 
achieve. We did note the use of pre-coordination in 
SNOMED CT is unpredictable, and it seems common 
to include acronyms within SNOMED descriptions. 
Careful use of modifiers such as laterality, chronicity 
and severity should be considered. Further studies are 
needed.

Critics often balk at the unwieldy size and 
complexity of SNOMED CT as too impractical for 
local use. In Canada the vendor and general practice 
communities, which are often small in size, are 
reluctant to adopt SNOMED CT, questioning their 
return on value for the effort required. From this 
study, we have shown it is feasible to incorporate 
SNOMED CT into EMR in the general practice 
setting. The methodology we have outlined is 
practical even for small medical offices with an EMR 
in place. We have also shown the potential use of 
SNOMED CT to improve the quality of recall from 
its hierarchy. The ability to demonstrate return on 
value, as in our encoding of problem lists with 
SNOMED CT to improve recall, is an important first 
step for practitioners to consider before full-scale 
conversion of their EMR.  

Limitations
There are several limitations to this study. First, the 
PL terms used have been established over the years 
mainly by one practitioner from a single setting, 
which are likely to vary between practices. Second, 
our current matching algorithms do not take into 
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account subtype hierarchy to limit searches, which 
could otherwise restrict unlikely choices such as 
Physical Object and Substance. Third, the evaluation 
of this methodology is incomplete to date; the full 
extent of the post-coordination effort required to 
encode the entire set of PL terms in this EMR should 
be further examined and reported. Fourth, the use of 
our partly instantiated hierarchy tree to improve 
recall quality, while promising, requires more 
thorough investigation into its utility with more 
complex real-life cases. Its design should also be 
aligned with the existing SNOMED navigation 
hierarchy feature that is already in place as part of the 
new RefSet release. 

Next Steps 
We are developing a Web-based mapping tool made 
up of the matching algorithms described earlier to 
allow the matching of clinical terms to SNOMED CT 
in an interactive or batch mode. With our focus 
continued to be on general practice EMR systems, 
there are several steps ahead to be considered. For 

instance, we need to expand the use of SNOMED 
terms to other parts of the EMR such as procedures, 
medications and billing. We also need to refine our 
encoding methodology to take into account specific 
contexts such as past/family history and health risks, 
and to use subtype hierarchy to improve search 
precision. The inclusion of frequency statistics on the 
distribution of matched SNOMED CT terms across 
the hierarchies would be useful to validate the results. 
These efforts should aid in the eventual creation of a 
primary care SNOMED subset, and eventually a 
concept model in the primary care domain. But most 
important, we should continue to exploit ways by 
which the use of SNOMED CT in the EMR can 
actually enhance patient care. 
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Original PL Term Type of 
Match 

Identifier Id
Type

SNOMED Term Descn
Type

Descn
Status

Atrial Fibrillation Exact 49436004 C Atrial fibrillation (disorder) F 0

82343012 D Atrial fibrillation P 0
Hypertension Exact 38341003 C Hypertensive disorder, systemic arterial (disorder) F 0

1215744012 D Hypertensive disorder P 0

64176011 D Hypertension S 0
Gastroesophageal Reflux All 235595009 C Gastroesophageal reflux disease (disorder) F 0

- GERD 2535970019 D GERD – Gastro-esophageal reflux disease  S 0
Cirrhosis Semantic 155809006 C Cirrhosis U 4

19943007 C Cirrhosis of liver (disorder) F 0

33568015 D Cirrhosis of liver P 0
Atrial Fibrillation Post, Exact 82343012 D Atrial fibrillation P 0
- Chronic 288524001 C Courses (qualifier value) F 0

428182017 D Courses P 0
90734009 C Chronic (qualifier value) F 0

150360019 D Chronic P 0
Chronic Kidney Disease Post 90708001 C Kidney disease (disorder) F 0

- CKD 150315015 D Kidney disease P 0
263502005 C Clinical course (attribute) F 0

391753013 D Clinical course P 0
90734009 C Chronic (qualifier value) F 0

150360019 D Chronic P 0
Headache Migraine Post, Exact 37796009 C Migraine (disorder) F 0

63055014 D Migraine P 0
246090004 C Associated finding (attribute) F 0

367802015 D Associated finding P 0
25064002 C Headache (finding) F 0

41990019 D Headache P 0
Table 4. Examples of matched PL and SNOMED terms by exact, all, semantic and post-coordinated matches. 

Legend: Identifier (contains ConceptId or DescriptionID depending on Id-Type); Id Type (C- Concept, D-

Description); Descn-Type (P-preferred, S-synonym, F-fully specified name, U-undefined); Descn-Status (0-

current, 4-ambiguous); note that all selected SNOMED terms are shaded and in bold
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Rec PL-Id PL-Term ConceptId DescriptionId Match AttributeId SequenceId
1 160 Atrial Fibrillation 49436004 83243013 Exact 0 0

2 789 Hypertension 38341003 64176011 Exact 0 0

3 685 Gastroesophageal Reflux - GERD 235595009 2535970019 All 0 0

4 32666 Chronic Kidney Disease CKD 90708001 150315015 Post 0 0

5 32666 Chronic Kidney Disease CKD 90734009 150360019 Post 263502005 1

6 431 Cirrhosis 19943007 33568015 Semantic 0 0

7 1044 Headache Migraine 37796009 63055014 Post, Exact 0 0

8 1044 Headache Migraine 25064002 41990019 Post, Exact 246090004 1

Table 5. Examples of the index table linking the original PL terms to matched SNOMED terms.

Legend: SequenceId indicates the relative ordering of the post-coordinated records 

                                                                                                           Two sets of post-coordinated terms shown above 

49601007 Disorder of cardiovascular system (disorder) - 1
128487001 Acute disease of cardiovascular system (disorder)

127337006 Acute heart disease (disorder)
57054005 Acute myocardial infarction (disorder)

70211005 Acute myocardial infarction of anterolateral wall (disorder) - 1
73795002 Acute myocardial infarction of inferior wall (disorder) - 5
307140009 Acute non-Q wave infarction (disorder) - 5

12026006 Paroxysmal tachycardia (disorder) - 1
9904008 Congenital anomaly of cardiovascular system (disorder)

363028003 Congenital anomaly of cardiovascular structure of trunk (disorder)
13213009 Congenital heart disease (disorder) - 1

10818008 Congenital malposition of heart (disorder)
27637000 Dextrocardia (disorder) - 1

27550009 Disorder of blood vessel (disorder)
359557001 Disorder of artery (disorder)

72092001 Arteriosclerotic vascular disease (disorder)
53741008 Coronary arteriosclerosis (disorder) - 9

414024009 Disorder of coronary artery (disorder)
53741008 Coronary arteriosclerosis (disorder) - 9

55855009 Disorder of pericardium (disorder)
3238004 Pericarditis (disorder) - 2

15555002 Acute pericarditis (disorder) - 1
56265001 Heart disease (disorder) - 1

127337006 Acute heart disease (disorder)
57054005 Acute myocardial infarction (disorder)

70211005 Acute myocardial infarction of anterolateral wall (disorder) - 1
73795002 Acute myocardial infarction of inferior wall (disorder) - 5
307140009 Acute non-Q wave infarction (disorder) - 5

12026006 Paroxysmal tachycardia (disorder) - 1
PL-Id Original PL Term Concept Id Fully Specified Name
4435 Dextrocardia 27637000 Dextrocardia (disorder)

10086 Heart Disease 56265001 Heart disease (disorder)

10087 Heart Disease Congenital 13213009 Congenital heart disease (disorder)

1035 MI Inferior Myocardial Infarction 73795002 Acute myocardial infarction of inferior wall (disorder)

12653 Myocardial Infarction Anterolateral 70211005 Acute anterolateral myocardial infarction (disorder)

1591 Myocardial Infarction Subendocardial (Non Q wave) 307140009 Acute non-Q wave infarction (disorder)

1202 Pericarditis 3238004 Pericarditis (disorder) 

13641 Pericarditis Acute 15555002 Acute pericarditis (disorder) 

15976 Tachycardia Paroxysmal 12026006 Tachycardia paroxysmal (disorder)

Figure 1. A partial SNOMED hierarchy for cardiovascular disorders derived from a set of original PL terms. The 

upper figure portion shows the partial SNOMED hierarchy for cardiovascular disorders; the lower figure

portion shows the original PL terms with the matched SNOMED concepts and their fully specified names. In 

the hierarchy, concepts that are bold and italicized are exact matches for the PL terms, followed by the

frequency of how often they appeared in the EMR.
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The objective of this work is to provide a 

formalization of the semantics of SNOMED CT’s 

refinement rules in Description Logics and to 

exemplify their usage on a real world wound 

documentation system. 

The goal of unambiguous documentation and 

communication of medical information with 

explicit semantics can be reached by combining 

standards and terminologies. Information Models 

(e.g. the HL7 Clinical Document Architecture on 

Level 3) together with terminology systems (e.g. 

LOINC and SNOMED CT) are promising 

candidates for building a semantically interoperable 

framework for electronic health records. 

We investigated how LOINC and SNOMED CT 

concepts can unambiguously and completely cover 

user interface terms of an existing electronic, form-

based documentation system used in clinical 

dermatology. Especially, the feasibility of post-

coordinating complex expressions according to the 

SNOMED CT terminology model is target of our 

investigations. Besides analyzing completeness and 

uniqueness of the mappings and the user-

friendliness of the mapping process, we discuss the 

different ways of post-coordination (refinement 

types) presented in SNOMED CT’s technical 

documentation. Where post-coordination was 

required, we adhered to the SNOMED CT 

terminology model refinement types and the 

“SNOMED Compositional Grammar” syntax. 

The manual mapping process proved to be time 

consuming and prone to ambiguous solutions where 

post-coordination of SNOMED CT expressions was 

necessary. However, for most user interface terms a 

complete semantic representation could be 

generated. A coverage of nearly 100% of clinical 

user interface terms shows the appropriateness of 

SNOMED CT as a reference terminology for the 

domain under scrutiny. The natural language 

descriptions of refinement types in the SNOMED 

CT documentation were formalized in Description 

Logics and reduced to four basic patterns. 

Problems with coding and post-coordination can be 

explained by weak documentation and poor tool 

support. The structure of the documentation forces 

users to collect necessary information from several 

SNOMED CT reference documents. Although 

mechanisms for post-coordination allowed to 

express a substantial amount of terms we suggest 

that tool support and formalized documentation for 

post-coordination (refinement) is enhanced. Tool 

support should reduce browsing complexity, 

support post-coordination and give clear advice 

how to use SNOMED CT according to the 

SNOMED CT compositional grammar and 

refinement rules. Furthermore, we recommend a 

thorough redesign of the post-coordination 

guidelines which entails the clarification of 

SNOMED CT's logical and ontological 

foundations.
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Using SNOMED CT Concepts for PAIRS
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SNOMED CT medical vocabulary can be used to 

identify complementary features in a database. This 

functionality is used to develop a natural language 

processor (NLP) for PAIRS (Physician Assistant 

Artificial Intelligence Reference System). Although about 

99% of concepts in PAIRS are present in SNOMED CT 

some features missing in it makes it unacceptable for any 

diagnostic decision support system (DDSS). Here we show 

that implementation of another NLP along with SNOMED 

CT makes it practically useful. 

INTRODUCTION

Ideally medical databases must have clinical entities 
whose features comprise of medical domain , apart 
from microbiological, pathological, radiological and 
surgical domains. Computerization of such a data 
enables many interesting functionalities. Apart from 
being a learning tool it can also be a new source of 
knowledge which is of use in diagnosis. For example, 
feature-disease or feature-feature links can be 
deduced from disease-feature links. One can aim to 
achieve a uniform usage of clinical terms from such 
databases.  
Utility of a database is limited by its completeness.
Use of such a database helps one to design a Natural 
Language Processor which helps in data extraction 
from different data sources. Here, we show how 
SNOMED CT is a source of uniform clinical terms 
that not only can be used to simplify PAIRS database 
but also helps code a NLP that can be used for 
further evaluations. In this paper we use the terms 
PAIRS and SNOMED as representing their 
respective databases. 
SNOMED vocabulary is used for several applications 
including Electronic Patient Records (EPR). 
However, as an evolving database many clinical 
terms are still missing in SNOMED which may be an 
impediment in developing a fully functional NLP. 
Here we show that this problem can be overcome by 
using a substitute algorithm (AINLP) (in addition to 
SNOMED algorithm) that works on PAIRS database. 
PAIRS is an internet based DDSS that gives 
diagnosis for a given patient data. It is available free 
for evaluation from www.lmspairs.com upon request. 
Its artificial intelligence (AI) is based on a variational  
probabilistic belief networks as developed by 
Jaakkola & Jordan [1]. PAIRS database has 547 
internal medicine diseases, 3700 unique features and 
40 000 disease-feature links. Feature-disease links of 
a patient data are extracted from PAIRS database by 

AINLP. This process is limited by ability of AINLP 
algorithm to find a complementary feature in the 
database [2]. This limitation is rectified by SNOMED 
CT algorithm that works on SNOMED CT database. 
There are several technological difficulties involved 
in NLP which may be caused by the algorithm, its 
implementation or its run times. These aspects are 
discussed at the end. Here we show how SNOMED 
CT can be used as a NLP for a DDSS. 

MATERIALS

The computations are performed using HP Pavilion 
Entertainment PC with (1.6 GHz Intel processor, 
1014 MB RAM) MS Vista operating system. We 
used a Perl program eutils written by Oleg Khovayko 
of National Library of Medicine to download about 
2.5 million abstracts from PUBMED. NCBI Clinical 
Queries Research Methodology Filters developed by 
Haynes RB. et al is used. Routine search and 
extraction processes are done by MS Visual C++ 
programming language. A customized database 
PAIRS-DB is used to store and extract data 
programmatically. We obtained an International 
affiliate license for SNOMED CT from National 
Library of Medicine, USA. Sun Micro-systems Net 
Beans 5.5.1. IDE along with Visual Web Pack is 
used for internet enabling PAIRS. PAIRS database is 
owned and developed by Logic Medical Systems 
(www.logicmedicalsystems.com).

PAIRS

PAIRS comprises about 75000 disease-feature links 
for over 1700 diseases. This database is developed 
over a decade from various text sources and journals. 
We used a perl program eutils (written by Oleg 
Khovayko of National Library of Medicine) to 
download up to 2500 abstracts for each of the 1700 
diseases from PUBMED. Queries based on Research 
Methodology Filters developed by Haynes RB. et al.,  
are used for searching PUBMED [3]. We 
programmatically searched for each of the features in 
these abstracts. Initially MS Access is used to store 
the data as disease-feature links. It has over 7000 
unique features. About 540 diseases having 
substantial number of features (about 40 000) are 
identified for application of artificial intelligence 
(AI) for diagnosis. 
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METHODS

SNOMED CT indices 

We used SNOMED algorithm for assigning indices 
for PAIRS features. Over 3100 features are used as 
input data for this analysis. The search is facilitated 
by using a customized database known as PAIRS-
DB. PAIRS-DB is programmatically loaded with 
SNOMED CT indices of duel_keywords, keyword 
and index-relationships. Each of the feature’s 
duel_keyword and keyword indices are found using 
SNOMED algorithm. The indices (base-indices) are 
looked for inter-relationships in SNOMED CT 
relationships table. Those indices (relative-indices) 
having maximum frequency are selected as 
representative of the clinical feature. If a feature does 
not have any relative-index its base-indices are used 
for searching a concept. We used 250 clinico-
pathological cases (CPC) published in New England 
Journal of Medicine (NEJM) between 1996-2003 for 
studying  SNOMED CT based NLP functionality. 

AINLP

AINLP is a substitute NLP that works independently 
of SNOMED algorithm. Its component database 
tables include: (a). general words: valid medical 
word and word pieces, (b).abbreviations: meanings 
of abbreviations. (c). synonyms, (d). antonyms and 
(e). feature-count: number of feature-disease links for 
given feature in PAIRS database. Input features from 
a patient data file are separated into their constituent 
words and their derivative word pieces. Word pieces 
are derived by deleting single letters from the end of 
each word in a cyclical fashion.  These are checked 
against “general word list” for selecting only valid 
medical words. Words are searched for abbreviations 
and if found their meanings are selected. Further, 
synonyms and their antonyms are searched for the 
given words. Finally, the input data is searched for 
their complementary features in PAIRS database. 
Computational times for AINLP are far shorter than 
SNOMED CT based NLP by several degrees. For 
example, for a list of 10-15 input features AINLP can 
find complementary features in 1-3 seconds where as 
same for SNOMED CT involves much long 
(sometimes as much as 1-3 seconds for each feature). 
Hence, AINLP is always run and if no 
complementary feature is found then only  SNOMED 
CT based NLP is used. 

SNOMED CT vs AINLP 

For a given input feature duel keywords, keywords, 
their indices and relationships between indices are 

generated using SNOMED CT algorithm as 
described in SNOMED CT Clinical Terms Technical 
Implementation Guide [4]. Tables used for index 
search are: sct_concepts_duelkeyindex_20070731, 
sct_concepts_wordkeyindex_20070731. PAIRS-DB 
has 27 folders alphabatically labelled (plus a base 
folder that takes numerical and non-alphabetic data). 
Each of the folder is again assigned 27 folders.  To 
reduce the computational time both the tables are 
programmatically loaded into PAIRS-DB. Finally, 
sct_relationships table has only those indices that are 
represented by PAIRS features. SNOMED CT based 
NLP runs in the following way: (a). find 
duelkeyindices, (b). find keyword indices that share 
duelkey indices . Finally, find maximally represented 
indices in sct_relationships table which is a PAIRS 
complementary feature for the input feature. 
For a given input feature AINLP converts it into its 
words, and word pieces (by deleting single letters  in 
a loop  from the end). General words or abbreviations 
in this pool are identified and a search of PAIRS list 
of features  is made. Complementary features in 
PAIRS database are identified by finding those that 
represent maximally in a search. Since volume of 
information processed in AINLP is much smaller 
than  SNOMED CT based NLP AINLP 
computational times are much shorter. 

Evaluation of NLP 

PAIRS NLP has two components: AINLP and 
SNOMED CT. We tested the functionality of each in 
a two stage process. Firstly, we tested each 
component's ability to identify complementary 
features in PAIRS database. Secondly, we verified its 
function by testing PAIRS diagnostic output. We 
used 250 CPC cases of NEJM for this study. Each of 
the case shares some features from 3100 unique 
features of PAIRS database. Since AINLP 
computational times are much shorter than those of 
SNOMED CT based NLP AINLP is used in PAIRS 
always. SNOMED CT based NLP is used only if no 
complementary feature is generated  by AINLP.  

RESULTS

Functionality of SNOMED CT indices 

Initially we included 3100 features of PAIRS in our 
analysis and identified 31 concepts (1 out of 100) 
that are not represented in SNOMED CT. Table 3 
gives the features in PAIRS database that are 
identified as missing concepts in SNOMED CT. 
Here, we show results of search of SNOMED CT 
concepts in PAIRS.
Multiple indices are assigned to a given concept in 
SNOMED CT (see table 1). This can be problematic 
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in assigning an appropriate index number to a 
complementary feature in PAIRS. This problem can 
be resolved by use of relationships table.Our analyses 
of finding SNOMED CT concepts in PAIRS, we 
look for common relationships between 
indices/concepts rather than indices/concepts 
themselves. A number that is generated at a higher 
frequency in our search  is preferred in assigning it to 
a feature in PAIRS. 
 For example “acute abdomen” may imply “acute 
abdominal pain”. Same index number (9991008) is 
shared between three different concepts. Index for 
“Acute abdomen” (920005) is also assigned to 
“Acute abdominal pain syndrome”. If we check the 
relationships table, only common relationship 
between two different indices of “Acute abdominal 
pain” (9991008 & 116290004) is “Abdominal pain” 
(21522001). Given two different indices for 
“Abdominal pain” (9991008) and “Abdominal pain 
through to back” (74704000) the only common 
relationship could be one index number identified by 
concepts: “Abdomen” or “Abdominal structure” 
(113345001).
SNOMED CT can be used as a form of NLP by 
implementing its algorithm and assigning a unique 
identifier index for a complementary feature in a 
given database. Any abbreviation or concept in a 
database can be accessed by using this functionality. 
For example, index numbers for the feature ESR is 
given in table 2. By assigning 416838001 index for 
the feature “Erythrocyte sedimentation rate raise” in 
PAIRS, a user can access correctly by either entering 
“ESR” or “Erythrocyte sedimentation rate”.  

SNOMED CT missing concepts 

Several radiological terms used in routine clinical 
practice are missing in SNOMED CT database 
(Table 3). Some of these features occur in significant 
number of diseases making them indispensable for 
any DDSS. For example, on chest x-ray “tree in bud 
pattern”, miliary infiltrates, (contrast) enhancing 
lesion, pulmonary nodules represent 18,19,12 and 45 
diseases respectively in PAIRS database. “Focal 
neurological lesion” missing concept represents 
about 27 PAIRS diseases. “Hypopigmented macules” 
and “heliotrope rash eyelids” are examples of other 
important missing concepts. 

Evaluation of SNOMED CT indices 

We assigned a SNOMED CT index to each of 3100 
complementary features in PAIRS. We selected 
features from each patient data of 250 CPCs (NEJM) 
and looked for them in PAIRS using SNOMED CT 
algorithm. We are able to find the feature if input 
feature is represented in SNOMED CT. However, if 

a feature is not in SNOMED concepts, we are unable 
to find it in our results. We overcome this issue by 
using AINLP along with SNOMED CT. By testing 
features from each of patient data in 250 CPCs 
(NEJM) we are able to generate representative 
features in PAIRS. These representative features 
constitute not only the exact input feature but also 
features related to it.  

Functionality of NLP 

PAIRS NLP has two components: AINLP and 
SNOMED CT whose implementation of the 
algorithms is described in methods. AINLP is best 
suited for 3100 features listed in PAIRS. Advantages 
of it include the computational times which are rapid 
in finding complementary features. However, for 
those features which are not part of 3100 features, 
AINLP is not tested. In case where AINLP fails to 
find a complementary feature SNOMED CT algorith 
is used, thus the limitations of AINLP are 
supplemented by SNOMED CT. 
We test the functionality of NLP by 250 CPC cases 
of NEJM. Each of the case has some of the features 
of 3100 features listed in PAIRS. Each case has 
about 10-30 features. The computational times are 
related 
to the number of features in a case. If the features are 
more the time NLP takes more time to complete. 

Index No. SNOMED CT concept 
9209005 Acute abdomen 

9209005 Acute abdomen, NOS 

158499006 [D]Acute abdomen 

163250006 O/E - acute abdomen 

207221008 [D]Acute abdomen 

207255006 [D]Acute abdomen 

268942007 O/E - acute abdomen 

9991008 Spasmodic abdominal pain 

9991008 Acute abdominal pain 

9991008 Colicky abdominal pain 

9209005 Acute abdominal pain 
syndrome, NOS 

9209005 Acute abdominal pain syndrome 

83132003 Upper abdominal pain 

74704000 Abdominal pain through to back 

71850005 Abdominal pain worse on 
motion 

54586004 Lower abdominal pain 

21522001 Abdominal pain 

21522001 AP - Abdominal pain 

116290004 Acute abdominal pain 

111985007 Chronic abdominal pain 

102614006 General abdominal pain-
symptom 

102614006 Generalised abdominal pain 

102613000 Localised abdominal pain 

Table 1 Multiple index numbers representing same 

SNOMED CT concept. This complexity can be 

resolved by finding relationships between them in 

relationships table. 
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Index No. SNOMED CT concept 
103208001 Erythrocyte sedimentation rate 

103208001 ESR - Erythrocyte 
sedimentation rate 

104154005 Erythrocyte sedimentation rate, 
non-automated 

104155006 Erythrocyte sedimentation rate, 
automated 

142875000 Erythrocyte sedimentation rate 

165464006 Erythrocyte sedimentation rate 

165466008 Erythrocyte sedimentation rate 

165467004 Erythrocyte sedimentation rate 

165468009 Erythrocyte sedimentation rate 

165468009 Erythrocyte sedimentation rate 

365649001 Finding of erythrocyte 
sedimentation rate 

365649001 Erythrocyte sedimentation rate 

365649001 Erythrocyte sedimentation rate 
- finding 

416103000 Elevated erythrocyte 
sedimentation rate 

416560009 Erythrocyte sedimentation 

416838001 Erythrocyte sedimentation rate 
measurement 

416838001 ESR - Erythrocyte 
sedimentation rate 

416838001 Erythrocyte sedimentation rate 
measurement 

Table 2 Natural language processor functionality by 

assigning unique identifier of SNOMED CT. See text 

for explanation. 

During the test, the maximal computational times are 
in range of 15-20 seconds and each input feature 
finds its complementary feature correctly. This 
satisfactory results do not rule out possibility of 
features that may not give complementary features 
both by AINLP and SNOMED CT. It needs  further 
testing to identify such features and take necessary 
steps.

DISCUSSION

SNOMED CT as NLP 

SNOMED CT concepts are useful in many 
applications including EPR. Its application in 
Diagnostic Decision Support Systems (DDSS) is 
limited by presence (or absence of) a concept. It can 
simplify querying in a clinical database [5]. Its 
clinical vocabulary can be used for computerized 
diagnosis and problem list [6]. Almost complete 
coverage (98.5%) of concepts in SNOMED CT is 
reported. Out of 5000 features, about 92.5% concepts 
are covered in SNOMED CT [7]. Here, we report 
about 99% concept coverage in SNOMED CT in 
present study. 

Missing concept in SNOMED 
CT

PMID 

Air under diaphragm 7509402 (4) 

Ataxia, sensory 8036880 (2) 

Ataxia, stance 14561428 (1) 

Spontaneous bleeding 14979383 (4) 

Bowel wall thickness 16632735 (3) 

Cervical sounds 

Edema of face 16340761 (6) 

Exercise intolerance/ 
Exertional intolerance/ Effort 
intolerance

16689370 (5) 

Nephromegaly 12621244 (1) 

Focal neurological signs 16499723 (27) 

Pulmonary oligemia 15658055 (4) 

Heliotrope rash eyelids 10770031 (4) 

Hypopigmented macules 15884465 (9) 

Immobile diaphragm (2) 

Infundibular pinching (4) 

Leucoerythroblastic changes (4) 

Miliary infiltrates 11555380 (19)

Pre syncope 16195623 (9) 

Pseudo fractures 6147751 (4) 

Pulmonary nodules 15875070 (45) 

Enhancing lesion 15891158 (12) 

Secondary achalasia 11176337 (3) 

Toxic granulocytosis 

Transient erythema 

Unilateral tongue weakness 12490688 (1) 

Vertebral tenderness 7895748 (5) 

Chest x-ray 
Hyperinflated_lungs 

16338298 (5) 

Chest x-ray honey comb 
appearance

(5) 

Chest x-ray tree in bud pattern (18) 

Chest x-ray space occupying 
lesion of lung 

(2) 

X-ray skull space occupying 
lesion of brain 

(9) 

Table 3 PAIRS concepts missing in SNOMED 

CT. PMID shows related abstract number in 

PUBMED. Number in parenthesis shows number 

of diseases the feature is present in PAIRS. 

Feature-disease links  for each are: (1). acute 

appendicitis (2). sub acute axonal 

polyneuropathy. (3). Wernicke-Korsakoff 

syndrome.(4). acute leukemia. (5). Crohn 

disease. (6). aortic incompetence. (7). aortic 

arch syndrome. (8). cardiac failure and dilated 

cardiomyopathy. (9). polycystic kidney disease. 

(10). AIDS related lymphoma. (11). CREST 

syndrome.(12). mixed connective tissue diseases. 

(13). ataxia telangiectasia. (14). liver abscess. 

(15). Hodgkin lymphoma. (16).megaloblastic 

anemia due to folic acid deficienc. (17). breast 

cancer. (18). arrhythmia. (19). cholestasis 

jaundice. (20). actinomycosis. (21). anterior 
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cerebral artery syndrome. (22). gastric 

carcinoma. (23). gram -ve septicemia. (24). 
alcoholism (25). cerebral ischemia. (26). 

ankylosing spondylitis. (27). amyloidosis. (28). 

bronchiectasis. (29). allergic angiitis. (30). lung 

cancer. (31). epilepsy.

PAIRS is a DDSS which has a database on which an 
artificial intelligence (AI) system works [2]. It has 
over 43 000 disease-feature links which are 
quantified and work in AI to give a diagnosis. Its AI 
system is based on variational probabilistic belief 
networks. For this, we require a robust NLP that can 
filter a clinical feature given any input. SNOMED 
CT is an ideal data source for such an application. 
However, its application is limited by a number of 
features missing. Many of these features may belong 
to radiology domain, which is crucial for diagnosis. 
For example, pulmonary nodules as a feature may be 
present in as many as 45 diseases in PAIRS but is 
missing in SNOMED CT. This suggests that use of 
SNOMED CT alone is insufficient NLP for PAIRS. 

AINLP as NLP 

For features which are exact complements of PAIRS 
or abbreviations of them, AINLP gives good results. 
However, results not shown here suggest that on its 
own AINLP is insufficient as NLP for PAIRS. This 
prompted us to use both AINLP and SNOMED CT 
for PAIRS. It is expected that those deficiencies in 
SNOMED CT are supplemented by AINLP. 
SNOMED CT has vast database and hence takes 
considerable amounts of time (up to about 3 seconds 
for each feature alone), we run AINLP first and if 
necessary (i.e., if a feature is not found by AINLP) 
then SNOMED CT is run. Thus, we check their 
computational run times. 

SNOMED CT missing concepts 

Typically diagnosis of a case involves not only 
history and physical examination but also 
interpretation of radiological data apart from 
pathological and microbiological data. Terms such 
“honey comb appearance” to describe a set of disease 
patterns is common in clinical setting. It is preferable 
to have these included in SNOMED CT concepts. As 
reported in results (see Table 2) many such concepts 
missing in SNOMED CT makes it impossible to use 
for a DDSS. Hence, AINLP is used along with 
SNOMED CT which substitutes the missing 
functionality. It is sometimes possible that a feature 
may not have its complementary for AINLP. In such 
a case SNOMED CT is allowed to run. We are not 
yet come across a feature that has no complentary for 

both AINLP and SNOMED CT. Presumably such a 
thing can happen either as a bug in the program or 
PAIRS-DB.

PAIRS as a DDSS 

PAIRS is an internet enabled and can be used for 
diagnosing difficult cases. Features entered in a text 
area are processed by AINLP and SNOMED CT to 
select complementary features in PAIRS. These 
features are further processed by an AI system to 
give probabilities of diagnoses. These diagnoses are 
based on Bayesian probabilities and depend on age, 
gender and geographic parameters.  Effectiveness of 
PAIRS functionality is limited by several technical 
and user difficulties. Generally, users like to enter 
patient data in a free form rather than choose from a 
table and they expect NLP to recognize the 
complementary features in the database for any given 
feature. For example, “myalgia” may suggest 
“bodypain”, “bodypains”, “body pain” or “body 
pains”. However, “body” and “pain” are common for 
many (upto 30 000) concepts in SNOMED CT and 
hence its runtime process may become unacceptable 
(over 300 seconds). This problem is solved in PAIRS 
by using  AINLP. PAIRS NLP consisting of both 
AINLP and SNOMED CT algorithms are tested 
using over 3100 unique features. Both the algorithms 
are complex and hence may yeild unpredictable 
outcomes in rare cases. The AI of PAIRS involves 
convex analysis and gives its diagnoses using a 
complex process.  Therefore, activity of NLP may or 
may not affect diagnostic ability of PAIRS. It may 
not affect adversely if for example, “abdominal pain” 
finds a feature “abdominal pain, upper”. But it may 
be otherwise if a complementary feature is not found 
at all. Many of these difficulties are minimized by 
use of AINLP followed if a complementary feature is 
not found by SNOMED CT algorithm. 

Key advantages of PAIRS as a DDSS include not 
only its ability to generate a differential but also 
suggest  procedures and features to look for in the 
patient for a given diagnosis. Its diagnostic process 
includes age, gender and geographic criteria based on 
epidemiological data from NHS, NCHS and WHO. 
PAIRS judgment on a diagnosis is graded into 7 
heirarchial levels (certainly, as far as evidence goes, 
probably, necessarily, presumably, possibly and 
impossibly) on basis of variational probability, age, 
gender, geographic data, precipitating cause, 
duration, pathogenesis and system/ nonsystemic 
involvement. Highest grade prediction for a selected 
disease is attained only if all criteria match to the real 
data. For example, tuberculosis as selected disease 
does not match a geography “United States of 
America” because this presumption does not support 

Representing and sharing knowledge using SNOMED
Proceedings of the 3rd international conference on Knowledge Representation in Medicine (KR-MED 2008)
R. Cornet, K.A. Spackman (Eds)

109



epidemiological data of NCHS. Hence, PAIRS 
judment never be “certainly” for such a diagnosis. 
PAIRS ability to suggest features to look for in a 
patient for given diagnosis is also very useful in 
arriving at a possible diagnosis. 

PAIRS has a free component PAIRS-LM (which 
covers 980 diseases of which 580 are common 
internal medicine diseases ) that gives links to  about 
2.5 million abstracts of PUBMED in National 
Library of Medicine (NLM). Each disease has about 
2500 abstracts categorized into diagnosis, features, 
genetics, treatment, complications, prevention, 
incidence, nationality etc. This information is useful 
in the process of arriving at a diagnosis. 

Two of the gold standards suggested for any DDSS 
include procedures to be performed for a given case 
and ability to extract data from EPR and give an 
output [8]. PAIRS suggests  procedures for a given 
case.  It also has a facility to select a case from 
multiple cases  and give a diagnostic/ procedural 
output. However, several of technical difficulties 
discussed by Berner [8] such as correctness of 
diagnosis, quality of differential, user acceptness  and 
amount of use  are critical issues  that still remain. 
Several additional advantages of PAIRS make it a 
possibly useful tool for arriving at a diagnosis atleast 
in difficult cases. 

Technical problems 

Main difficulty while using SNOMED CT arises 
because it has multiple indices assigned to a given 
concept. However, from its relationships table one 
can derive parent and child relationship between 
various indices (see results). Sometimes the 
relationships table may not yeild a clear parent/child 
ontologies for a given concept [9]. In such a case one 
may have problem in assigning an index to the 
complementary feature in user database. Results 
shown here are similar to those reported by others[9-
10]. 

Computational times involving AINLP and 
SNOMED CT vary depending on the input feature. 
Typically AINLP run-times are much shorter than 
those for SNOMED CT and is run only if AINLP 
cannot generate any complementary feature. These 
difficulties prompt suggestions for users of PAIRS to 
get familiarize with PAIRS list of features before 
evaluating its diagnostic functionality and preferably 
to limit to those in 3100 list of PAIRS features as 
input data. 
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A Mapping Between SNOMED-CT and the OXMIS Coding Scheme

Jeffery L. Painter, B.S.
GlaxoSmithKline, Research Triangle Park, NC

Abstract
The General Practice Research Database1 (GPRD)

contains a mixture of legacy data coded in both the
Oxford Medical Information Systems (OXMIS) coding
scheme and various versions of the Read codes. The
state of GPRD today offers a unique opportunity to
make use of the SNOMED CT coding scheme in order
to integrate this mixed coding into a single view for
all of the data contained therein. One mechanism we
offer is to make use of the UMLS Metathesaurus to fa-
cilitate a mapping between OXMIS and the SNOMED
CT nomenclature. Providing a map between Read is
more easily handled since those codes have been “ab-
sorbed” into the SNOMED CT coding scheme itself.

Objective
Our mapping is a multi-stage process focused on

providing a high degree of accuracy while minimiz-
ing the number of unmapped codes between these two
schemas. This is facilitated through the use of a se-
mantic similarity metric and association maps utilizing
concepts found within the UMLS Metathesaurus[1].

Our alignment is comprised of the following steps:

1. Direct Lexical

2. Plural Variants

3. Normalized Form

4. Stop-words removed

5. bi-gram comparison for probabilistic match

This procedure is focused on providing a direct map
between a “foreign” scheme and SNOMED CT[2] di-
rectly for use in a relational database or similar appli-
cation.

We use the ideas of semantic similarity and “con-
cept” mapping to align two distinct coding schemes,
namely OXMIS[3] and SNOMED CT via the Metathe-
saurus. This method allows one to progress in mapping
two schemas by using only the verbatim representa-
tions given by the code/term pairs found within each.

While we strive to provide a fully automated map,
this is not entirely possible. Consequently, a browser

1General Practice Research Database is maintained by the (UK)
National Health Service Information Authority

Figure 1: Mapping of Thrombocytopaenia.

has been constructed to enable the clinician to explore
our maps and determine with their medical expertise
the “correct” association. When a direct map cannot
be found, the probability (0-1 with 1 being an exact
match) values are displayed and the results are ranked
from most to least likely match.

The example shown in Figure 1 demonstrates the
relationship between the OXMIS code “2871” for
Thrombocytopaenia and the resulting list of codes it is
associated with in the SNOMED CT coding scheme.
The first code “415116008” has an alternate spelling
for the term, but the probability of match is quite high,
90.3%. Additional codes, such as “Thrombocytopenia,
NOS” are also provided as possible candidates for this
particular code.

Results
There are 16,920 unique OXMIS codes that actu-

ally appear in the coded data. These codes represent
over 65.7 million data entries. The mapping proce-
dure attained significant data coverage mapping ap-
proximately 96% of the records to SNOMED CT.
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Abstract

This paper describes an approach to a 
vocabularies for the questions/responses  for 
patient health histories and examinations that are 
applicable not only to present paper-based 
records but also to the Electronic Health Record 
(EHR) and across health specialty disciplines. It 
is also relevant to the interoperable use of the 
EHR across settings of care and is an initial step 
in the use of these vocabularies in implemented 
systems.  The project uses the biomedical 
terminologic expertise present in the healthcare 
professional schools of the Washington, 
Wyoming, Alaska, Montana, Idaho (WWAMI) 
region served by the University of Washington 
Health Sciences Center. The intention is to 
develop cross-health specialty professional 
consensus on these two small specific 
vocabularies as an example of not only the 
process for arriving at common vocabularies for 
use in the evolution of the EHR and its support 
of the Basic Patient Care Scenario but also to 
deal with the practical problems of the 
implementation of the uses of such vocabularies 
in real healthcare enterprises and the transition to 
new information storage media. These 
vocabularies have been submitted for ASTM E-
31 ballot for ASTM E-1633 Standard 
Specification for Coded Values to be Used in the 
Electronic Health Record and to be associated 
with specific data elements already identified in 
the E-1384 Standard Practice for the Structure 
and Content of the EHR. Other 
national/international informatics standards 
issues are recognized, including the potential 
applicability of SNOMED-CT. 

Formal and continuing professional education 
aspects are also recognized and steps are taken to 

help address these problems. This effort 
contributes to the national common conventions 
for the EHR by providing an initial value set for 
the key data elements for patient assessment on 
the Patient Care Scenario described in E-1384. 
The Patient Care Scenario for use of the 
Electronic Health Record  (EHR), or its current 
paper analogs, in medicine and dentistry 
identifies the capture/updating of the patient’s 
health history as a key initial step of a healthcare 
encounter followed by capturing examination 
observations for use in patient assessment. The 
idea for a common specific vocabulary for both 
the questions asked in a patient health history 
and the responses to be given, as well as the 
examination observations made, has been openly 
discussed for some time. Both vocabularies are 
derived from widely used paper forms and 
organized by the categories for Body Systems 
already stated in E-1633 and can subsequently be 
expanded in stages to eventually serve all 
designated healthcare specialty disciplines with a 
common vocabulary usable in any medium and 
become a central resource for industrial 
Suppliers of informatics products and services. 
These Suppliers can then create implemented 
information architectural components to be used 
by Acquiring Healthcare Enterprises to build into 
their individual enterprise information 
architectures such that there is conceptual, as 
well as technical, commonality across all 
enterprises. The initial version could then be 
included in the work of various 
national/international Standards Developer 
Organizations (SDOs) and be iteratively 
extended and evolved.   
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Aligning the Top-Level of SNOMED-CT with Basic Formal Ontology 
William R. Hogan, MD, MS 

UPMC & Dept. of Biomedical Informatics of University of Pittsburgh, Pittsburgh, PA 
hoganwr@upmc.edu

At UPMC, we are evaluating approaches to the use 

of terminologies and ontologies to achieve semantic 

interoperability among applications.  As one part of 

comparing and contrasting SNOMED-CT (SNCT) 

with a realist ontology approach, we aligned the top-

level concepts of SNCT within Basic Formal 

Ontology (BFO). We report our findings here. 

INTRODUCTION
At UPMC, we intend to achieve semantic 
interoperability among our information systems.  We 
and our technology partner, dbMotion, are evaluating 
various approaches to the use of terminologies and/or 
ontologies in support of this mission.  We therefore 
sought to better understand SNCT,1 BFO2 and realist 
ontology in general, and their unique views of the 
world. To compare and contrast these views, we 
conducted the exercise of aligning the top-level 
concepts of SNCT within BFO.  

MATERIALS
We downloaded the 01/2008 version of SNCT and 
BFO in .obo format from the BFO web site. 

METHODS
The January, 2008 version of SNCT has 19 top-level 
concepts.  We reviewed each one and either: 

1. Equated it with an existing BFO class.  
2. Gave it an is_a relationship to a BFO class. 
3. Split it into two or more classes that we either 

equated with a BFO class or added to BFO. 
4. Did not add it to BFO at all because either (a) it 

was too vague to serve as a synonym of a BFO 
term, (b) it did not represent anything in reality, 
or (c) it mixed epistemology with ontology. 

To understand as completely as possible what each 
top-level concept meant, we studied their children 
and read the SNOMED-CT User Guide.  The net 
result of this study was a new .obo file containing 
BFO extended with synonyms and new classes. 
 Note that the descendants of the 19 top-level 
concepts of SNCT do not necessarily follow their 
top-level ancestor into BFO either for the same 
reasons in #4 above or because they represent a 
different kind of BFO entity than their ancestor. 

RESULTS
We arranged the 19 top-level concepts of SNCT into 
BFO as follows (Table):

SNCT Concept Placement in BFO 
Body structure is_a independent continuant 

Clinical finding None (epistemology) 

Environment or 
geographic location 

Split: environment = niche, geographic 
location is_a spatial region 

Event Equate with event 

Linkage concept None (nothing in reality) 

Observable entity Equate with dependent continuant 

Organism is_a object

Pharmaceutical / 
biologic product 

Split into three classes, each of which 
is_a object 

Physical force is_a dependent continuant 

Physical object Equate with object 

Procedure is_a process 

Qualifier value Equate with dependent continuant 

Record artifact is_a independent continuant 

Situation with 
explicit context 

None (ambiguous) 

Social context None (ambiguous) 

Special concept None (nothing in reality) 

Specimen is_a object

Staging and scales Split into two classes, each of which 
is_a dependent continuant 

Substance Equate with substance 

Table – Destination in BFO. 

DISCUSSION
This exercise demonstrates that most (14/19 or 74%) 
of the top-level concepts of SNCT can be fitted into 
the framework of BFO, but only after significant 
reorganization. Five concepts did not fit into BFO for 
various reasons.  One of the most important of these 
concepts is clinical finding, which is intended to 
comprehend diseases and signs and symptoms of 
disease. However, a finding of disease 
(epistemology) is not the same thing as a disease 
(ontology).  Thus, this discrepancy between SNCT 
and BFO is important to consider further.  Future 
work is to align the next level of SNCT (345 
concepts) with BFO.  
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Abstract: Defined SNOMED concepts enable

and enhance subsumption, and the computation

of equivalence between different methods of

expressing the same meaning. The SNOMED

CT
®

July 2006 release was systematically

examined using the CliniClue browser to

determine the degree of representation for a set

of commonly used terms that are relevant for the

clinical care of the newborn infant. There was

defined representation for 24.4% of terms drawn

from the categories of diagnosis, intervention,

drug or observation. There was primitive

representation for 62.0% of the terms, partial

representation for 10.2% of the terms, and no

representation for 3.4% of the terms.

Background: SNOMED CT
®
, the Systematized

Nomenclature of Medicine Clinical Terms
®

(SCT), is a comprehensive, concept-based,

clinical terminology with a semantic model

based on description logic that uniquely

identifies and describes clinically relevant

concepts. SCT has a polyhierarchical structure

with multiple parent-child relationships together

with relationships between concepts in different

subtype hierarchies that define the meaning of a

concept relative to other concepts. SNOMED

concepts must be sufficiently defined to enable

subsumption, the computation of equivalence

between different methods of expressing the

same meaning, and other computational

processes.

SCT has evolved from the Systematized

Nomenclature of Pathology into its current form

over the past forty years. The content of the

terminology has been determined largely by the

voluntary contributions of many, diverse clinical

groups. An unforeseen consequence of this

opportunistic evolutionary process may be that

some unique, clinically relevant concepts of

highly specialized clinical domains do not have

defined representation within SCT.

The purpose of this study was to determine the

degree of representation within SCT for a set of

commonly used terms that are relevant for the

clinical care of the newborn infant.

Methods: The SNOMED CT
®

July 2006 release

was systematically examined using the CliniClue

browser [version 2006.2.8, November 2006] to

determine if the 881 elements within five sets of

terms that are relevant for the clinical care of the

newborn infant are represented in SCT.

The term sets were extracted from the Clinical

Information Management System used in the

Neonatal Intensive Care Unit at the Hospital for

Sick Children, Toronto, Ontario, Canada. The

sets of terms were categorised as diagnosis

[disorder], intervention [procedure], drug and

observation [finding]. The representation for

each element within SCT was classified as

defined [SNOMED concept sufficiently defined],

primitive, partial or no representation.

Results: Overall, there is defined representation

for 24.4% of the terms. There is primitive

representation for 62.0%, partial representation

for 8.6%, and no representation for 6.4% of the

terms.

The diagnosis and intervention categories have

the highest defined representation. The drug and

observation categories have the lowest defined

representation.

Table.  Representation within SNOMED CT®

A B C D

Diagnosis 33.2 57.6 6.4   2.8

Intervention 50.0 30.9 14.6   4.6

Drug 0 75.2 21.2   3.6

Observation 9.3 80.2 6.4   4.1

All terms 24.4 62.0 10.2 3.4

where A is defined representation, B is primitive

representation, C is partial representation, and

D is no representation (expressed as %)

Conclusion: SNOMED CT
®

provides defined,

structured representation based on description

logic for only 25% of this set of terms that are

used for the clinical care of the newborn infant.
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Abstract
Background: In this paper, we developed F–MTI 
(French Multi-Terminologies Indexer) which is a 
generic automatic indexing tool able to index 
documentation in several health terminologies such 
as SNOMED 3.5 (Internationale Systematized 
Nomenclature of human and veterinary MEDicine). 
Objective: We compared F–MTI and Snocode (a 
Canadian commercial tool) on a corpus of 100 
discharge summaries. Results: The results showed 
that Snocode and F-MTI indexing are as close as two 
manual indexing can be. They also provided close 
results in terms of diagnosis. 
Keywords : 
Abstracting and Indexing/methods; Systematised 
Nomenclature of Medicine; medical records; 
international classification of diseases 

INTRODUCTION 

France chose in 2006 the SNOMED 3.5, the most 
exhaustive medical terminology in French, for 
medical record indexing. SNOMED 3.5 is included at 
91% in the SNOMED CT (Clinical Terms). It 
contains 150,000 concepts distributed among eleven 
axes. The huge number of codes and the complexity 
of this terminology accounts for the reluctance of the 
physicians to index deseases in medical records. A 
computer support for this time-consuming procedure 
is then urgently required. We developped F-MTI [1] 
(French Multi-Terminologies Indexer) that generates 
a document indexing in all the implemented 
terminologies (MeSH (Medical Subject Heading) , 
SNOMED 3.5, ICD10 (Classification of Deseases) 
and CCAM (French CPT). Then all the terminologies 
are projected in the terminology(ies) desired by the 
user with the help of the mappings (most of them are 
coming from the UMLS). The goal of this study is to 
compare the SNOMED indexing of F-MTI and 
Snocode3 (a Canadian commercial tool [2] used in 
several hospitals in England, Canada and France). 

MATERIALS AND METHODS 

A corpus of 100 patient discharge summaries 
manually indexed in SNOMED 3.5 is difficult to 
obtain due to the complexity of this terminology. 
Faced with these facts, we projected the SNOMED 
codes to ICD10 codes that can be manually indexed 
and which enables to compare the two tools in terms 
of diagnosis. The projection process of SNOMED 
into ICD10 was performed by the same mapping. The 
ICD10 manual Indexing of these documents was 
taken as the reference. First, the two sets of 
SNOMED codes performed by F-MTI and Snocode 
were compared without any reference with simple 
measures. Then the two sets of ICD10 codes resulting 
from the projection of the SNOMED codes into 
ICD10 codes, were compared using an ICD10 
manual indexing reference. 

RESULTS & DISCUSSION 

The results showed a Hooper’s measure of 32.9 
comparing the two sets of SNOMED codes. With the 
help of a SNOMED-ICD10 mapping we could 
compare in terms of diagnosis these two sets with a 
manual ICD10 indexing. We obtained a precision of 
6.1 for Snocode and 4.4 for F-MTI and respectively a 
recall 24.7 and 27.0. Snocode and F-MTI indexing 
are as close as two manual indexing can be. They 
also provided close results in terms of diagnosis. 

CONCLUSION 

This is encouraging for our project. With some 
improvements we hope that FMTI will integrate a 
French electronic patient record system.
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INTRODUCTION 

As a major provider of integrated healthcare decision 
support solutions, Thomson Healthcare (TH) 
incorporates internal extensions of SNOMED CT® 
content, particularly to represent indications 
(SNOMED CT® Clinical finding hierarchy). The 
XML-based authoring units that house TH clinical 
content are heavily linked to SNOMED CT®. TH 
product releases occur as often as once daily, 
therefore twice-yearly SNOMED CT® releases are 
insufficient to meet our needs for timeliness and 
currency of data. A more or less granular concept 
may be needed to capture the clinical condition 
within TH content. TH developed and implemented a 
pilot indications model to assist with standardizing 
the way new internal SNOMED CT® extension 
concepts are represented in Health Language’s 
CyberLE® tool. 

METHODS/RESULTS 

The pilot model specifies that relationships to native 
SNOMED CT® concepts should fully define the new 
internal extension concept when possible, while 
avoiding comorbidities (finding + finding) and 
“qualifier of qualifier” groupings (as in SNOMED 
CT® role groups). In contrast to SNOMED CT®’s 
primitive (i.e., partially defined) status, if an internal 
TH extension concept cannot be fully defined but is 
required for TH content, the concept is added with no 
coordinating relationships and a request for addition 
is submitted to IHTSDO.  When native SNOMED 
CT® concepts requested for addition become 
available, TH retires the internal version of that 
concept and re-links content to the native SNOMED 
CT® concept. If IHTSDO declines to add the 
requested concept to SNOMED CT®, internally-
created extension concepts are retained.  

TH has created and subsequently retired over 200 
internal SNOMED CT® extension concepts because 
of replacement with native SNOMED CT® concepts.  
We will compare the replacement native SNOMED 
CT® concepts’ defining attributes to the coordinating 
relationships on a sample of 21 duplicated TH-
created extension concepts. The sample includes: 5 
fully defined and 16 primitive native SNOMED CT®  

concepts. TH matched SNOMED CT® in selecting 
the same parent concept in 4 cases (80%) and 13 
cases (81%) in the fully defined and primitive 
subsets, respectively. TH used 2-3 coordinating 
relationships per concept, compared to 2-7 defining 
attributes per SNOMED CT® concept. About half 
(33/64) of SNOMED CT® defining attributes added 
no further definition beyond that of the concept’s 
parent(s) (redundancy). The TH model considered 
2/16 (12.5%) of the primitive SNOMED CT concepts 
fully defined with one matching TH's relationships 
exactly. Examples of differences in granularity 
between TH and SNOMED CT® will be presented. 
Limitations of this approach to modeling indications 
include: SNOMED CT®’s attribute set is modified 
frequently; TH has created internal relationship types 
unavailable within SNOMED CT®’s attribute set; 
delivery to and use of coordinating relationships by 
TH’s end-user customers are still in the investigative 
stages.   

CONCLUSION 

The continuous analysis and improvement of TH’s 
standardized indications modeling within SNOMED 
CT® will facilitate usage of TH’s integrated 
healthcare decision support solutions by end-user 
customers and third-party vendors. Ongoing process 
refinements include reevaluation of existing 
coordinating relationships to account for new, retired 
or revised defining attributes within SNOMED CT® 
and formalizing the pilot model. 
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Abstract
The situation of medical coding and medical

economics is quite specific in France. Besides ICD-
10, two specific terminologies are used: the Inter-
national Nomenclature of Human and veterinary
Medicine (SNOMED International) developed by
the College of American Pathologists and CCAM1.
This work aims at creating and optimizing inter
and intra terminology relations between ICD-10
and SNOMED Int.
As 91% of SNOMED Int. preferred terms (PTs)
and 87% of ICD-10 PTs are present into SNOMED
CT, via the UMLS2 Metathesaurus, we explore the
automatic inheritance of SNOMED CT relations
(Finding Site of, Associated Morphology, . . .) by
SNOMED Int. and ICD-10 terms.

Method
In a first step, we extracted all UMLS concepts
linked by a SNOMED CT relation. For exam-
ple, the two UMLS concepts C0000727, C0000726
are linked by the SNOMED CT relation “Find-
ing Site of”. In a second step, we mapped
the SNOMED CT relations to two terminologies
namely SNOMED Int. and ICD-10. As the terms
of SNOMED Int and ICD-10 are also linked to
the concepts found in step 1, we projected the
relations found between the UMLS concepts to
the ICD-10 and SNOMED Int. PTs. Finally, we
obtained for each terminology a set of PTs pairs
linked by the SNOMED CT relations.

Results
We found a total of 264,216 SNOMED Interna-
tional PTs pairs linked via a SNOMED CT re-
lation and 6,417 ICD-10 PT pairs linked via a
SNOMED CT relation. We also obtained 114,036
pairs of one ICD-10 PT and one SNOMED Int.

1The French equivalent to the US CPT4
2We exploited the UMLS 2007AB

PT linked by a SNOMED CT relation.
For example the ICD-10 term “Achondroplasia”
(ICD-10 code: Q77.4) was linked according to the
“Associated morphology” SNOMED CT relation
to the term “Dysplasia, congenital” (SNOMED
Int. Code: M-20020) and linked according to the
“Finding Site of” SNOMED CT relation to the
term “Bone”(SNMOED Int. code: T-11001).

Conclusion
We have several perspectives in mind. The first
one is to apply the same methodology to another
health terminology (the MeSH thesaurus) which is
the current terminology used in CISMeF (a Web
site dedicated to Catalog and Index Health Re-
sources in French). The information retrieval al-
gorithm using the relations that will be produced
between MeSH terms could be very easily imple-
mented in the CISMeF Web site, (e.g. the rela-
tion “Adams Stokes syndrome” “Finding site of”
“heart conduction system” could lead to expand or
limit the initial query “Adams Stokes syndrome”).
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INTRODUCTION 

The main objective of modeling value sets is to 
specify a concept domain with certain slots or 
attributes of interest such that the attribute-values can 
be obtained from one or more terminologies of 
interest. Typically these values are extracted 
manually, thereby warranting the development of 
(semi-) automatic techniques. However, in general, 
this has been an unresolved issue in part due to the 
lack of (i) linkage to clinical context patterns that act 
as constraints in defining a concept domain, (ii) 
techniques for automatically analyzing membership 
of values to a particular concept domain, and (iii) 
approaches based on formal languages such as the 
Web Ontology Language (OWL). Toward this end, 
we propose a novel approach for context-driven 
(semi-) automatic value sets extraction and evaluation 
called LexValueSets. 

METHODS 

The crux of LexValueSets is to render the semantics 
of a concept domain using a formal model that takes 
into consideration various context patterns (e.g., 
location, time duration), specified typically by subject 
matter experts (SMEs), to drive the development of 
two complementary techniques for value sets 
extraction: extensional and intensional. The 
extensional approach comprises of an explicitly 
enumerated set of local terms, provided initially by 
SMEs, which correspond to an initial list of values for 
different slots of the concept domain, and are used for 
automatically extracting concepts from a particular 
terminology or a coding scheme. For example, given 
a concept domain pain in humans, the set of local 
terms for a slot location would comprise of hand, 
hip and other anatomical structures. The intensional 
technique, on the other hand, leverages the 
computable semantic definition of a concept domain 
to automatically identify relevant concepts for filling 
the slots. For example, the SNOMED CT concept 
“661005 jaw region structure” can be used to 
fill the location slot of pain since it is a 
finding_site for the SNOMED CT concept 
“274667000 jaw pain”. We implement a 
prototype by adopting the LexGrid terminology 
model (http://www.lexgrid.org) for both these 
approaches and provide preliminary evaluation based 
on SNOMED CT.  

RESULTS 

To evaluate our LexValueSets, we extracted three 
different values sets from the 20070731 version of 
SNOMED CT of UMLS (version 2007AC) for both 
the extensional and intensional techniques. For the 
extensional technique, the first value set (VS-EA) 
contains all the matching results (filtered only for the 
anatomical concepts of SNOMED CT) obtained 
directly from the lexical match between the local 
terms and SNOMED CT concepts, the second value 
set (VS-EB) contains additional child concepts of 
concepts contained in VS-EA, and the third value set 
(VS-EC) contains all concepts from VS-EB and 
additional concepts obtained through traversing the 
target concepts of all associations for each concept in 
VS-EB. On the other hand, for the intensional 
technique, we identified all the sub-concepts of the 
concept “22253000 pain” in SNOMED CT and 
extracted the target concepts of the association 
“363698007 finding site” as candidates for the 
value set (VS-IA) corresponding to the location
slot. Similar to the extensional technique, additional 
value sets, VS-IB and VS-IC, were extracted by 
traversing the hierarchy.  

Intensional Approach
 VS-IA  

(n=217) 
VS-IB 

(n=24404) 
VS-IC 

(n=26712) 
Extensional 
Approach 

   

VS-EA (n=858) 23 811 829 
VS-EB (n=17128) 136 17056 17099 
VS-EC (n=25635) 215 24156 25606 
Table 1: Overlap between extensional and intensional value sets 

Table 1 shows that the number of overlapping 
concepts between VS-EA and VS-IA is 23 
(accounting for about 3% of the concepts in VS-EA), 
whereas the number of overlapping concepts between 
VS-EA and VS-IB is 811, accounting for about 93% 
of the concepts in VS-EA. This result indicates that 
most concepts in VS-EA are more granular (i.e., 
closer to the leaf nodes in the SNOMED CT 
hierarchy) than those identified in VS-IA that are 
derived by the intensional approach. The number of 
overlapping concepts between VS-EC and VS-IC is 
25606, accounting for about 99.9% of VS-EC and 
95.8% of VS-IC. This result indicates that the 
coverage of the two value sets for both the 
approaches, once hierarchy traversal is employed, is 
almost same.  
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Abstract. We introduce a framework for ap-
plying healthcare standards and clinical terminology
systems to achieve semantic interoperability between
distributed Electronic Medical Record (EMR) systems.
We follow healthcare standards from HL7 [1] and
Canada Health Infoway [2] Infostructure (EHRi)
guidelines and documents in an integration project.
This allows us to tackle the involved complexity
and high technical requirements in order to provide
guidelines for similar system integration projects. HL7
specifies the details of different healthcare scenarios by
identifying the involved entities and required transac-
tions and messages. Scenario information details and
actual payload are then encoded into HL7 v3 message
structure.

Semantic interoperability
To achieve semantic interoperability, we map data
fields of two healthcare systems onto the HL7 v3 clini-
cal terms using three major Infoway documents: Vocab-
ulary Status Worksheet, Message Definition Worksheet
and Scope & Package Tracking Framework. The over-
all translation framework consists of three phases: In-
teractions Extraction, Message Analysis, and Domain
Analysis to generate HL7 standard messages from typ-
ical healthcare scenarios. The legacy healthcare sys-
tem provides healthcare scenarios and the framework
generates the corresponding HL7 v3 messages that im-
plement those scenarios.

Phase 1: interaction extraction. In this phase,
HL7 standard interactions are developed through anal-
ysis of transactions. Given a scenario of legacy health-
care system, we divide it into smaller transactions re-
quired to complete a scenario. The legacy transactions
are mapped onto the standard HL7 transactions which
have similar semantics. Each transaction consists of a
sequence of interactions to support outgoing and in-
coming communications.

Phase 2: message selection. In this phase,
the elements of HL7 message structure (i.e., Trans-
mission Wrapper, Trigger Event Control Act Wrapper
and Message Payload) are created. Each interaction re-

sulted form previous phase is assigned to a transmission
wrapper schema. The transmission content is defined
in this schema. The semantic of transaction content
can be understood from the associated HL7 R-MIM.

Phase 3: domain analysis. In this phase, the
final HL7 v3 message instance is generated from the
message schema resulted form last phase. The HL7
domain that should be used for each field of schema is
mentioned inside the schema. The clinical terminology
system that should be used for each HL7 domain is
defined in ’Vocabulary Status Worksheet’.

Parallel to the steps of the above phases, a mapping
file should be generated that assigns data fields of
legacy system to HL7 domains and the appropri-
ate clinical terminology system concept defined by
SNOMED. Using this mapping file and domains of
HL7 schema extracted in the last step, another map-
ping file should be generated to map legacy system
data fields to HL7 domain, HL7 message and the
appropriate filed inside the message schema. Using
this second mapping file, the pair <legacy attribute,
value> can be translated by <HL7 attribute mapped to
legacy attribute, value> inside the HL7 XML message.

Case study environment
As a case study, different algorithms (as proprietary
services) of an existing research oriented Clinical
Decision Support System (CDSS) have been provided
for a Cardiac Rehab Center in another city (as client).
The proposed framework has been applied on this
integration project and the results are available. Our
current research involves using Oracle’s Health Trans-
action Base (HTB) [3] as the application development
environment to develop and transfer HL7 v3 messages
using Service Oriented Architecture (SOA).

References
[1] Health Level Seven official website. www.hl7.org.
[2] Canada Health Infoway. EHRS Blueprint, an inter-
operable EHR framework, April 2006.
[3] ORACLE. Oracle HTB datasheet, August 2005.

1

Representing and sharing knowledge using SNOMED
Proceedings of the 3rd international conference on Knowledge Representation in Medicine (KR-MED 2008)
R. Cornet, K.A. Spackman (Eds)

120



SNOMED Information Accessible to the Danish Community 

Ulrich Andersen, CEO, MD MPA, Bente Maegaard, professor, Lina Henriksen, senior 
consultant, Anna Braasch, senior researcher, Lars Kayser, associate professor MD PhD 

IHTSDO and University of Copenhagen, Denmark 
uan@ihtsdo.org, {bente,lina,anna}@cst.dk, LK@sund.ku.dk 

BACKGROUND AND AIM 

Currently, citizens are increasingly taking 
responsibility for their own health through actively 
seeking information. The SNOMED CT database 
constitutes an excellent framework for the creation of 
an e-Health system with a natural language interface. 
This interface will translate citizens’ natural language 
questions into structured database queries and return 
natural language answers. This poster presents the 
first steps of the development process with focus on a 
number of diabetes related questions.  

QUESTION AND ANSWER 

The innovative aspect of this approach is to develop a 
user friendly Question Answering (henceforth QA) 
system based on language technology methods and 
established database techniques (1).  

The following example illustrates a QA session 
exploiting SNOMED terminology and relations: Why 

do I feel increased thirst? The answer to this question 
is a list of all diseases known by SNOMED and 
related to this symptom. A reduction of the list to the 
most likely diseases can be achieved by obtaining 
supplementary information from the user wrt. other 
experienced symptoms.  The user might add: I also 

have frequent urination, some weight loss and 

breathing difficulty. The answer will be generated on 
the basis of pre-defined templates and will comprise 
the disease(s) showing all symptoms mentioned or as 
many of them as possible. For example, You may 

suffer from a metabolic disorder or diabetes. 

QUESTION CLASSIFICATION 

The SNOMED QA system must classify the natural 
language input wrt. the syntactic as well as the 
semantic dimensions. A syntactic classification of the 
question pattern concerns the grammatical structure 
and the type of question, such as yes/no and wh-type. 
The semantic dimension concerns mapping of the 
question to a predefined logical representation which 
will in turn be used as a basis for the generation of 
the database query which will retrieve the answer.  

LOGICAL REPRESENTATION 

The method selected for the logical language is based 
on the representation methods applied in AquaLog 
(2) and MOSES (3). These approaches take their 
starting point in relations, arguments and attributes. 
An example of a general template expressing 
arguments and a relation between them is: <?wh->
exists(symptom, bodypart), which  covers questions 
like the following. Why do I have  an ulcer on my 

foot? The template will be instantiated with the 
question as follows: <?why> exist(ulcer,foot). 

ONTOLOGY ANCHORING 

One of the main challenges is to locate  information 
relevant to the question within the SNOMED system.  
A feasible approach involves the combination of 
logical templates with specific query strategies. The 
query strategy invoked will point to one or more 
hierarchies, depending on the type, semantic content, 
explicitness and the complexity of the question. The 
question Why do I have breathing difficulties? could 
involve look-ups in the following hierarchies: 
OBSERVABLE ENTITY, BODY STRUCTURE and 
CLINICAL FINDING. The information retrieved 
from these hierarchies will reveal that breathing 

difficulty is a disorder in the respiratory system, and 
a list of diseases with this symptom can be generated.  

PERSPECTIVES 

It is expected that the QA system will be able to 
exploit SNOMED knowledge to provide advanced 
access to expert systems within the medical area.  
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Abstract

OpenMRS, an open-source framework used for the
management of medical records, uses a basic con-
cept dictionary to drive its data model. SNOMED
CT is an ontology organising medical record con-
tent in order to provide a consistent mechanism
to store, retrieve and use clinical data across spe-
cialties and sites of care. This poster proposes
a project that aims to extend OpenMRS with the
integration of SNOMED CT and related ontology
technologies.

PROJECT DESCRIPTION

OpenMRS is an open-source application frame-
work enabling the design and implementation of
customizable medical records systems aimed pri-
marily at medical informatics efforts in developing
countries [1]. It is based upon an application de-
veloped by the Regenstrief Institute and Partners
in Health based on experiences in Kenya, Haiti
and Rwanda [2], and is currently implemented in
countries such as Kenya, Rwanda, South Africa,
Uganda, Tanzania, Zimbabwe, and Peru with
scope to extend the adoption in multiple other lo-
cations throughout Africa [1]. It also claims nearly
twelve million discrete observations collected for
nearly 50,000 HIV patients with over 550,000 en-
counters in the AMPATH OpenMRS implemen-
tation in Kenya alone [1, 3]. It is implemented
in Java and uses MySQL as database. The cen-
tral data model is driven by a concept dictionary,
which allows for the collection of coded, reusable
data without requiring changes to the data model.
The concept dictionary is a collection of coded,
unique concepts used to generate forms and en-
code data that is captured within the system [4].

Generally, ontologies facilitate the structuring
of information and data in a specific domain in
such a way that systems can reason over it. On-
tologies thus provide mechanisms that extend the

representational and computational limits of tra-
ditional databases and other knowledge represen-
tation systems [5, 6]. Arguably, one of the most
successful application area in this regard is the
biomedical field, as witnessed, for example, by the
widespread use of the medical ontology SNOMED
CT [7] which addresses most areas of clinical in-
formation using a representation language that al-
lows for computer processing [7].
The OpenMRS concept dictionary can be re-
garded as a crude ontology, and the extension
thereof to use a formal ontology such as SNOMED
CT with the associated technologies for the man-
agement and use of captured data, as well as for
the generation of input forms, is the purpose of the
project proposed by this poster. The project aims
to investigate all aspects with regards to method-
ology, enhanced functionality and reasoning that
can be the benefits of integration of SNOMED CT
into OpenMRS.
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INTRODUCTION

Thomson Healthcare (TH) is a major provider of 

integrated healthcare decision support solutions.

The XML-based authoring units housing TH’s

clinical content are heavily linked to SNOMED CT®.

As product releases occur as often as once daily, it is 

imperative that the most current standards available

are supported in the content; this includes supporting

SNOMED CT® Updates. The purpose of this poster 

is to outline the current  TH SNOMED CT® Update 

process and to identify the resources employed to 

support the July 2007 SNOMED CT® Update.

METHODS/RESULTS

TH editors use XML-based authoring tools to create 

indexed disease, lab and drug indications content

using SNOMED CT®. Which SNOMED CT®

codes are used depends upon the content type;

however most are linked to codes in the Clinical

finding and Procedure hierarchies.  While the rates of 

change within SNOMED CT® vary between

releases, the average change in the number of active 

concepts per release was 4093 between Jan 2002 and

Jan 2005. Over 228,000 instances of SNOMED CT®

references currently exist in TH content. When

evaluating the resource need for supporting an

update, scale is a major issue and the resource

requirements vary based upon the scope and

complexity of the changes made within SNOMED 

CT® between versions.

The primary goal of the update process is to

harmonize current SNOMED CT® and extension

data with the most recent version of SNOMED CT®. 

The main process phases include: Analysis, Issue

Resolution and Implementation.

During Analysis  the following are identified: changes

to SNOMED CT® concepts  referenced in TH

content, duplications between new SNOMED CT®

and TH created extension concepts, and changes to 

SNOMED CT® concepts with relationships to TH 

extension concepts. For the July 2007 SNOMED 

CT® update, 1 Clinical Terminology Specialist

(CTS) completed the analysis over 172 hours with 

support from an Information Technology Specialist 

(ITS). Overall, 285 concepts were identified for

review.

In the Resolution Phase, CTS identify and coordinate 

the concept resolutions, editors review the proposed 

resolutions and ITS implement the changes  in a

development environment.  Resolutions may include:

re-referencing content to an active concept, retiring a 

TH extension, or creating a TH extension. Extensive

quality assurance is completed in multiple

development environments over a 7 day period to 

ensure the desired outcomes are achieved.  For the

July 2007 update, the Resolution Phase utilized 4

full-time CTS, 2 full-time ITS and editors

representing 1750 man-hours over 7.5 weeks.

In the Implementation Phase, the new version of

SNOMED CT® and the changes to the TH extension 

concepts are deployed into the production

environment. Authoring unit  changes  are also

implemented at this time. Comprehensive quality 

assurance processes are executed. For the July 2007 

update, implementation and quality assurance

occurred over 3 days and 2 days, respectively.  This

represented 420 man-hours involving 10 editorial 

consultants, 4 full time CTS and 4 full-time ITS.

CONCLUSION

Supporting SNOMED CT® updates requires

extensive resources ranging from CTS to ITS to

editorial support. The July 2007 TH SNOMED CT® 

Update required over 2300 man-hours during a 3

month time period.  As the TH processes improve,

the anticipated the time required to support an update 

will decrease, however this will continue to depend

upon the scale of changes SNOMED CT®

implements.
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Unification of Electronic Patient Data in a Commercial Health Information 
System through Multi-dimensional Semantic Annotation 

Isabel Barth, MA, Sven Tiffe, PhD MS, Evgueni Loukipoudis, PhD MS 
Agfa HealthCare, Trier, Germany 
Isabel.Barth@agfa.com 

INTRODUCTION 

To facilitate reusability of electronic patient data in 
Orbis, a complex hospital information system, 
LexGrid1 has been used as a registry for elements of 
electronic health records and for their semantic 
annotation.

Orbis allows its users to define an arbitrary amount of 
data structures in addition to the system’s central data 
model by providing a visual tool for the definition of 
forms. Such forms correspond to data containers 
stored in a generic, entity-attribute-value (EAV) data 
model. They are composed of input fields that can be 
defined from a set of possible data formats, such as 
check boxes, free text fields or lists. 

This results in a very flexible system for clinical 
documentation that empowers clinicians to define the 
same clinical concept in multiple ways. The 
classification of such customized data structures is a 
major challenge as fields are identified by unique 
identifiers based on text labels. 

METHODS 

The data is classified in two phases: In the first step, 
the structural system information, such as form 
containers and their elements, is projected to a 
proprietary hierarchic terminology in a LexGrid 
compliant format. Each element corresponds to an 
individual concept whose code is derived from the 
data’s unique database identifiers. The context of the 
data entry forms is preserved by part-whole relations 
to their individual form elements. In a second step, 
these structural concepts are semantically annotated 
by links to terms from controlled clinical 
terminologies, such as SNOMED CT. 

This procedure is supported by concept properties 
that contain additional information about the system 
information, such as descriptions and data types.  
During semantic annotation, this information can be 
used to ease the challenge of finding appropriate 
codes from clinical terminologies that represent the 
meaning of the corresponding system information. 

Such fine-granular semantic annotation yields 
unification of clinical data and facilitates 
interoperability and retrievability.  

For example, structurally unrelated heterogeneous 
information – such as data denoting a particular 
patient’s height which may exist in the scope of 
different forms – become isomorphic on the clinical 
semantic layer through their common SNOMED 
parent concept (see figure 1). 

ORBIS concepts on 
structural semantic 
layer

SNOMED concepts 
on clinical semantic 
layer

use of forms for 
documentation

clinical users

Figure 1 - Unification of structural data in Orbis 

OUTLOOK AND RESULTS 

Using LexGrid’s interterminological links, the 
resulting semantic network is extensible by further 
dimensions, such as Orbis patient data or higher 
semantic levels representing a Reference Information 
Model (RIM). The RIM elements will be composed 
of concepts from the intermediate clinical level. To 
ensure semantic integrity during concept selection, 
both the structural context provided by the Orbis 
terminology and the domain knowledge inherent in 
SNOMED relations must be considered.  

Compared to our first approach2, which required a 
semantic extension to the clinical database, the 
integration of structural system data into a semantic 
network of clinical terminologies enabled us to add 
semantics to a running hospital information system 
while avoiding changes to its core persistence 
structure. One of the major challenges is the 
practicability of semantic annotation in a real-life 
scenario which requires human expertise and 
performant tools to support the annotation process.
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Using SNOMED for Reference Hierarchies in the CPT Data Model 

Marjorie Rallins, DPM, Eric Mays, PhD 
American Medical Association, Chicago, IL 

marjorie.rallins@ama-assn.org, emays@mays-systems.com 

INTRODUCTION

CPT® is a HIPAA standard terminology widely used 
in the United States for reporting medical services 
and procedures, supporting administrative functions 
such as claims processing and medical guideline 
review.  One characteristic of CPT is that the 
descriptions of procedures and services are provided 
at a level of generality required to make distinctions 
for the purposes of reporting. As electronic patient 
records receive greater adoption, it is desirable to 
record services and procedures at a detailed clinical 
level, requiring greater specificity than may be 
available in CPT. 

One means to facilitate interoperation between CPT 
and more clinically specific terminologies is to 
provide a mapping.  If clinical services and 
procedures are captured in SNOMED, for example, a 
mapping may be utilized to provide one or more 
relevant CPT codes to be selected for reporting 
purposes.  This should be a familiar approach to 
those with knowledge of the SNOMED to ICD-9-
CM maps.  Indeed such a SNOMED to CPT map is 
presently under construction in a collaboration of the 
AMA and SNOMED Terminology Solutions, a 
division of the College of the American Pathologists. 

In the CPT Data Model, now available as the CPT 
Developer’s Toolkit, a description logic model of 
CPT is being developed which utilizes SNOMED 
concepts in the construction of the CPT reference 
hierarchies.  This complementary approach to foster 
clinical specificity raises some interesting 
possibilities for recording of clinical data, enabling a 
flexible post-coordination approach in CPT. 

CPT DATA MODEL 

One of the goals of the CPT Data Model is to 
facilitate search and navigation. CPT has been 
primarily distributed in book format organized as 
chapter, section, sub-section, etc. with compactness  
of the printed form a key consideration. The CPT 
Data Model improves on the flat file CPT electronic 
distribution and printed materials by providing free 
standing descriptions for the headings, incorporating 
additional levels of organization, and several other 
improvements which are beyond the scope of this 
presentation. The hierarchical organization of the 

data model follows the book layout in order to 
provide access to those familiar with the book and 
also to maintain consistency with the history of the 
editorial process.  Adopting a description logic model 
for CPT along with utilization of SNOMED for 
reference hierarchies enables alternative means of 
access and organization.  This is especially relevant 
for guideline and utilization review where it is 
desirable to aggregate all procedures which use a 
certain device, for example.  

REFERENCE HIERARCHIES 

The CPT Data Model incorporates thirteen different 
reference hierarchies, such as Anatomic Site, Device, 
and Specimen which are generally defined as a union 
of one or more SNOMED sub-hierarchies. For 
example, the members of the Anatomic Site reference 
hierarchy are the sub-concepts of the Body Structure 
concept in SNOMED.  Some reference hierarchies, 
specifically Complexity (e.g. High complexity 
decision making) and Patient Type (e.g. Established 
patient) have no SNOMED correlates and are defined 
as an enumeration of concepts in a CPT extension. 
Several reference hierarchies involve more than one 
set of SNOMED sub-concept hierarchies. The 
Approach reference hierarchy in CPT includes the 
SNOMED sub-hierarchies of Procedural Approach, 
Surgical Access Values, and Relative Sites. While a 
single more general concept could be chosen, there is 
significant value in constraining the reference 
hierarchies as specifically as possible. 

The role relationships in the CPT Data Model align 
with the reference hierarchies and their ranges are 
constrained by a reference hierarchy.  This approach 
has proven to be very useful during QA, and will 
have even greater value during the current editorial 
cycle as we surface these constraints in the Protégé 
OWL editing tool used for modeling by subject 
matter experts. 

DISCUSSION

SNOMED has proven to be a rich source for defining 
the reference hierarchies in CPT, with the 
subsumption semantics having clear benefits for QA 
and the editorial process.  We are providing the CPT 
specific additions to the IHTSDO for incorporation 
into future releases of SNOMED. 
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Using SNOMED to Normalize and Aggregate Drug References in the
SafetyWorks Observational Pharmacovigilance Project

Gary H. Merrill, Ph.D., Patrick B. Ryan, M.Eng., Jeffery L. Painter, B.S.
GlaxoSmithKline, Research Triangle Park, North Carolina

The SafetyWorks project at GlaxoSmithKline de-
veloped an integrated set of methodologies to support
the use of large observational data sources for moni-
toring and assessing drug safety. Here we focus on the
SafetyWorks drug ontology, its construction and an-
notation, and its role in normalizing drug references
across disparate data sources.

FDA “Guidance for Industry Good Pharmacovig-
ilance Practices and Pharmacoepidemiologic Assess-
ment” [1] characterizes pharmacovigilance as “all sci-
entific and data gathering activities relating to the
detection, assessment, and understanding of adverse
events.” SafetyWorks is an integrated system for lever-
aging the use of observational data in such pharma-
covigilance activities. Figure 1 illustrates the extrac-
tion of raw data from the GlaxoSmithKline Healthcare
Information Factory (a repository of large disparate
databases), the normalization and aggregation of the
raw data by means of medical condition and drug on-
tologies, and the use of this normalized and aggregated
data in observational screening and observational eval-
uation.

Observational screening applies an unmatched co-
hort design to provide a framework and context in
which all relations amongst drugs and conditions can
be explored. It should be considered as a hypothesis-
generating step that may facilitate the identification
and prioritization of drug-condition pairs warranting
further evaluation. Observational evaluation is an anal-
ysis targeted at specific hypotheses, and it provides a
robust estimate of the strength of drug/condition asso-
ciations within the population of interest.

Figure 1: The SafetyWorks Process

The SafetyWorks drug ontology is constructed and
annotated in a sequence of steps:
• The sub-hierarchy of SNOMED CT whose root is

Drug or medicament is extracted from the UMLS
Metathesaurus ([2]).

• RxNorm is employed to extend this hierarchy to
include branded drugs by grafting branded drug
nodes onto their generic forms in SNOMED CT.

• The extended ontology is then annotated with
drug references from the set of observational data
sources (electronic health records and insurance
claims databases).

• The ontology is finally simplified by (a) pruning
unnecessary ”forms” of drugs, (b) ensuring that no
drug reference annotates both a node and an ances-
tor of that node, and (c) creating ”generic product”
nodes to ensure that annotations are made only to
the lowest level of the ontology.

The resulting drug ontology is an extended modified
version of the SNOMED CT Drug or medicament hi-
erarchy containing 16,100 categories; and it is em-
ployed as illustrated in Figure 1 to ”normalize” all drug
references in each of the data sources to branded or
generic drug categories. On the basis of that normal-
ization, “aggregated drug eras” (periods of time dur-
ing which a patient has continuously taken a particu-
lar drug) are created from the raw data, a similar pro-
cess is used with our MedDRA-based medical condi-
tions ontology to create “aggregated condition eras”
(periods representing common episodes of care for the
same medical condition), and observational screening
and evaluation are applied to the resulting normalized
and aggregated data.
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