
ORIGINAL REPORT

A proposed modification to Hy’s law and Edish criteria in oncology
clinical trials using aggregated historical data

Daniel Parks1*, Xiwu Lin1, Jeffery L. Painter2, Jie Cheng1, Christine M. Hunt3, Colin F. Spraggs4,
Jeanenne J. Nelson5, Lloyd Curtis6, J. Alan Menius2 and Kwan R. Lee1

1Medical Analytics, GlaxoSmithKline, Collegeville, PA, USA
2Medical Analytics, GlaxoSmithKline, Research Triangle Park, NC, USA
3Global Clinical Safety and Pharmacovigilance, GlaxoSmithKline, Research Triangle Park, NC, USA
4Genetics, GlaxoSmithKline, Stevenage, UK
5Worldwide Epidemiology, GlaxoSmithKline, Research Triangle Park, NC, USA
6Global Clinical Safety and Pharmacovigilance, GlaxoSmithKline, Stockley Park, UK

ABSTRACT
Purpose Identifying drug-induced liver injury is a critical task in drug development and postapproval real-world care. Severe liver injury is
identified by the liver chemistry threshold of alanine aminotransferase (ALT) >3� upper limit of normal (ULN) and bilirubin >2� ULN,
termed Hy’s law by the Food and Drug Administration. These thresholds require discontinuation of the causative drug and are seldom
exceeded in most patient populations. However, because maintenance of therapy is critical in the treatment of advanced cancer, customized
thresholds may be useful in oncology patient populations, particularly for those with baseline liver chemistries elevations.
Methods Liver chemistry data from 31 aggregated oncology clinical trials were modeled through a truncated robust multivariate outlier
detection (TRMOD) method to develop the decision boundary or threshold for examining liver injury in oncology clinical trials.
Results The boundary of TRMOD identified outliers with an ALT limit 5.0� ULN and total bilirubin limit 2.7� ULN. In addition,
TRMOD was applied to the aggregated oncology data to examine fold-baseline ALT and total bilirubin, revealing limits of ALT 6.9�
baseline and bilirubin 6.5� baseline. Similar ALT and bilirubin threshold limits were observed for oncology patients both with and
without liver metastases.
Conclusions These higher liver chemistry thresholds examining fold-ULN and fold-baseline data may be valuable in identifying potential
severe liver injury and detecting liver safety signals of clinical concern in oncology clinical trials and postapproval settings while helping to
avoid premature discontinuation of curative therapy. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Drug-induced liver injury (DILI) can severely affect
patients. It is a leading cause of compound termination
during drug development as well as drug withdrawal
after the drug is commercially available.1,2 Most of
the drugs withdrawn for hepatotoxicity have caused
death or required transplantation at frequencies less
than one per 10 000 patients. At this low frequency,
typical drug registration databases of 1000 to 3000

patients generally do not demonstrate any events of
severe liver injury. Liver chemistries are rigorously
monitored during clinical trials to evaluate the safety
of compounds in drug development.3

The Food and Drug Administration (FDA) has devel-
oped liver safety guidelines for use in clinical trials to
identify liver safety signals during development1. The
FDA recommends Hy’s law, which says that given
alanine aminotransferase (ALT) >3� upper limit of
normal (ULN) and total bilirubin >2� ULN, there is
potentially a liver event of serious clinical concern1.
This threshold was derived from Hy Zimmerman’s
observations4–6 and confirmed in large DILI regis-
tries.7,8 FDA researchers have developed a graphical
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tool to easily identify liver safety signals in clinical trial
populations called eDISH: Evaluation of Drug Induced
Serious Hepatotoxicity.9,10 Lin et al.11 independently
assessed these limits, utilizing the multivariate outlier
detection method against aggregated clinical trials data
of 18 672 patients and affirmed that Hy’s law limits are
similar to those derived from generally healthy clinical
trial populations.
However, both the distribution and clinical signi-

ficance of liver chemistry elevations may vary in dif-
ferent patient populations. Hy’s law does not take into
account these differences and may not be optimized
for selected patient populations. Specifically, oncology
clinical trial patients may require different thresholds
for detecting potential DILI due to elevated pretreat-
ment liver chemistries, especially among patients with
liver metastases or liver disease and in those receiving
prior or concomitant chemotherapy associated with
known hepatotoxicity. Liver chemistry elevations
may result in treatment discontinuation and subse-
quent poor control of serious and life-threatening
cancer. Therefore, improved understanding of liver
chemistries and thresholds in oncology patients may
improve disease management. Aggregated clinical
trials data serve empirically to help define customized
threshold limits for use in subpopulations rather than
the fixed limits suggested by Hy’s law for generally
healthy patient populations.

METHODS

Data sources

Liver chemistry data from aggregated historical
clinical trial data provide a reference distribution and
are used to establish the decision boundary or thresh-
old limits for examining liver safety signals in selected
therapeutic areas. To establish limits pertinent to
identifying potential DILI in oncology clinical trials,
data from historical oncology trials were extracted
from a GlaxoSmithKline (GSK) aggregated clinical
trials database containing study data collected between
1985 and 2005. The data set consisted of 3998 patients
identified from 31 phase II and III oncology trials as
shown in Table 1. The reference data were chosen
based on its size and representativeness of several
common cancer types. The aggregated data are
denoted as the GSK historical oncology patient data
(GSK-HOPD) and is 51% men, with median age of
61 years (range 18–90 years).
Baseline liver chemistry inclusion criteria were used

in most of these studies; usually, these criteria required
transaminases and bilirubin to be less than or equal to

2� ULN if liver metastases were absent or less than or
equal to 5� ULN if liver metastases were present at
the time of baseline screening. The aggregated data
were further divided to distinguish between patients
with liver metastases at trial enrollment (29%) and
patients without (71%).
Differences in the distributions of liver chemistry

data between oncology and generally healthy patient
populations were evaluated by comparing liver chemistry
data from GSK-HOPD with another GSK aggregated
data set including 18 672 patients without underlying
liver disease originating from 28 phase II–IV trials.
These aggregated data are referred to as the GSK
generally healthy patient data (GSK-GHPD). Patients
from the GSK-GHPD were 92.3% women, with mean
age of 44.3 years.12

Statistical methods

Establish decision boundaries by truncated robust
multivariate outlier detection. To identify potential
hepatocellular injury, multivariate outlier detection
has been studied extensively13,14 and applied to detect
outliers in multivariate safety measures.15 Multivariate-
outlier detection is based on the Mahalanobis
distance,13 which measures the distance of a subject
from the center of the data defined by correlated
multivariate variables assumed to be normally distrib-
uted. Robust distance is obtained using the robust
estimate of mean and covariance in the calculation of
the Mahalanobis distance. Robust estimates still have
reasonable efficiency even when the majority of data
come from a multivariate normal distribution and only
a few outliers exist. Subjects with a robust distance
greater than a given cutoff are considered outliers.
Multivariate outliers will include data points in all
directions. However, only abnormally high elevations
of liver chemistry measurements indicate a potential
liver safety issue. Hence, outliers with abnormally
small liver chemistry values are not indicative as
potential toxicity cases, and therefore, they would
not be considered clinically relevant outliers.

Table 1. Aggregated oncology data sources

Cancer type Number of trials Number of patients

Colorectal 6 2091
Breast 5 202
Ovarian 5 493
Lung 10 869
Prostate cancer 1 81
Non-Hodgkin’s lymphoma 1 7
Kaposi’s sarcoma 1 6
Leukemia 2 249
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Truncated robust multivariate outlier detection
(TRMOD)16 was proposed as a robust statistical method
for identification of clinically relevant outliers in labora-
tory safety data while automatically excluding clinically
irrelevant outliers (Figure 1a). Decision boundaries can
be adjusted statistically by controlling the false detection,
or tolerance, probability. A false detection probability
of 0.001 means that 99.9% of the patients from an under-
lying normal distribution are expected to be within the
decision boundary or only 0.1% of the patients are
expected to fall outside of the decision boundary.
TRMOD was applied to the fold-ULN data from

the aggregated oncology clinical trials to obtain a
decision boundary for ALT and total bilirubin. Simi-
larly, it is applied to fold-baseline data to obtain a
decision boundary based on ALT and total bilirubin
change from baseline data that may also be useful
for monitoring liver safety data during clinical trials.

Modified eDISH based on decision boundaries from
historical data. Based on liver chemistry threshold
limits consistent with potential Hy’s law cases, FDA
researchers developed eDISH for liver safety evaluation
by graphically plotting both peak ALT and peak total
bilirubin for each patient relative to Hy’s law limits
(Figure 1b).9,10 A modified version of eDISH (mDISH)

was created updating the decision boundaries with
thresholds defined by TRMOD using GSK-HOPD
rather than the fixed Hy’s law limits. By extending the
truncation lines on the TRMOD decision boundary
for ALT and total bilirubin (Figure 1a), roughly the
same decision boundary was calculated as found in
the eDISH tool.

Threshold limits for ALT and bilirubin are obtained
using the intercept values of the TRMOD decision
boundary with the axes of ALT and bilirubin. There-
fore, limits based on decision boundaries for both
fold-ULN and fold-baseline data may be used instead
of the fixed Hy’s law limits. TRMOD limits, like
eDISH limits, are used to form three regions: Hy’s
law (severe toxicity), Gilbert’s cholestasis (elevated
bilirubin), and Temple’s corollary (elevated ALT)
similar to regions found in the original eDISH and
shown in Figure 1a. The mDISH tool was created for
both fold-ULN and fold-baseline data. The 95% confi-
dence intervals for these threshold limits are calculated
by bootstrapping methods.

RESULTS

Distribution of baseline liver chemistry data. To illus-
trate the distribution difference of ALT and total

Figure 1. (a) Illustration of TRMOD boundary for two markers. The solid curve is the TRMOD decision boundary, whereas the usual multivariate outlier
detection decision boundary is indicated by the dotted eclipse. Regions I–III are formed by the (extended) truncation lines derived from the TRMOD decision
boundary. (b) Illustration of eDISH: plot of peak ALT and bilirubin data with the Hy’s law limits. Hy’s law quadrant: patients with peak ALT >3� ULN and
peak bilirubin >2� ULN; Gilbert’s cholestasis quadrant: peak bilirubin >2� ULN; Temple’s corollary quadrant: patients with peak ALT >3� ULN
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bilirubin, distribution frequencies of each were plotted
and compared cancer patients with or without liver
metastases at the time of baseline screening in GSK-
HOPD with those in GSK-GHPD. Both oncology
subsets had a higher percentage of patients with large
values of ALT as compared with the liver healthy
patient as shown in Figure 2. The percentile plot
demonstrates that oncology data have a larger percen-
tile overall than that of the liver healthy data, espe-
cially regarding more extreme ALT values, and those
with liver metastases possess larger percentiles than
do those without liver metastases. Both the histogram
and percentile plots indicate that the oncology data
demonstrate more extreme values of ALT than do
the liver healthy data at baseline, and the oncology
data with liver metastases has a slight shift to larger
values from the data without liver metastases. This
significant shift of distribution of liver chemistry data
at baseline suggests that the fixed Hy’s law limits
might not be suitable in the evaluation of liver safety
data and decision making in oncology clinical trials.

Both fold-ULN liver chemistry data and change from
baseline liver chemistry data are evaluated for potential
elevation. Changes from baseline data are taken into ac-
count to note the pretreatment measurements that may
reduce the impact of interlaboratory variation and offer
greater sensitivity in the identification of safety sig-
nals.11,17 The fold-baseline (defined as a liver chemistry
value divided by the corresponding baseline value)

values are used to measure the change from baseline
liver chemistry data in this study.
Although the populations of GSK-HOPD and

GSK-GHPD differ in distributions of age and gender,
the results for each were quite similar independent of
sex. Previous studies indicate modest associations of
ALT with increasing age (Pearson correlation ≤0.26)
in Asians,18 and decreasing ALT has been shown
among the elderly.19 By contrast, disease-related liver
chemistry differences between the oncology and gener-
ally healthy populations were clinically more notable
than gender- or age-related influence.

mDISH for oncology patients based on fold-ULN
data. To obtain threshold limits of ALT and total
bilirubin to be used in mDISH for fold-ULN data for
oncology patients, TRMOD decision boundaries were
calculated for ALT and bilirubin using GSK-HOPD
overall and its subsets. The TRMOD decision bound-
aries based on the liver metastases subsets with a
false detection probability of 0.001 are plotted
together with the peak data in Figure 3a–b. Figure 3c
plots the TRMOD boundary based on the entire GSK-
HOPD data set. The threshold limits calculated are
listed in Table 2. The truncation lines of the TRMOD
boundary in Figure 3c and Table 2 suggest that the
threshold limits of ALT >5� ULN and total bilirubin
>2.7� ULN may be used in mDISH for oncology
patients to define outliers. Separately, threshold limits

Figure 2. Plot of ALT distributions for GSK oncology historical clinical trial data and generally healthy patient clinical trial data. Left: histograms of fold-
ULN ALT at baseline for generally healthy patients (Healthy Pat), oncology data without liver metastases (W/O Meta), and oncology data with liver metas-
tases (W/ Meta); Right: plot of percentile versus cumulative percent (%) of fold-ULN ALT at baseline for each data set
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of ALT >4.8� ULN and total bilirubin >2.5 ULN are
calculated for oncology patients without liver metastases
and limits of ALT >5.5� ULN and total bilirubin
>3.0� ULN for patients with liver metastases.

mDISH for oncology patients based on fold-baseline
data. TRMOD was applied to fold-baseline ALT and
bilirubin data from GSK-HOPD to calculate decision
boundaries based on the two subgroups and are plotted
in Figure 4a–b together with both the peak fold-baseline
ALT and peak fold-baseline total bilirubin for each
individual patient.

Figure 4c plots the TRMOD boundary together with
the peak fold-baseline data for the entire GSK-HOPD.

Table 3 lists the threshold limits of baseline-adjusted
ALT and bilirubin calculated using a false detection
probability of 0.001. Based on the truncation lines
of the TRMOD boundary in Figure 4 and Table 3,
ALT limit of 6.9� baseline and bilirubin limit of
6.5� baseline might be applied in mDISH when
examining fold-baseline liver measurements from
oncology clinical trials.
Separately, threshold limits of ALT >7.0� baseline

and total bilirubin >6.0� baseline may be used for
those without liver metastases at baseline, whereas
threshold limits of ALT >6.2� baseline and total
bilirubin >7.0� baseline may be used for those with
liver metastases at baseline.
Employing fold ULN exposes a weakness:

Only peak values are considered, whereas any infor-
mation regarding baseline values is completely
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Figure 3. mDISH plots of peak fold-ULN ALT and bilirubin in the two subsets of GSK oncology clinical trial data sets with and without liver metastases,
with TRMOD decision boundaries (the false detection probability of 1 in 1000 is used to obtain the TRMOD boundary): (a) data without liver metastases,
(b) with liver metastases, and (c) all together

Table 2. Estimate of threshold limits for fold-ULN ALT and bilirubin limit with 95% confidence interval for the GSK oncology historical data (combined)
and its two subsets (without and with metastases)

Marker

Without metastases With metastases Combined

Estimate 95% LL 95% UL Estimate 95% LL 95% UL Estimate 95% LL 95% UL

ALT (�ULN) 4.8 4.22 5.63 5.5 4.59 6.09 5.0 4.46 5.72
BILT (�ULN) 2.5 2.25 2.80 3.0 2.65 3.36 2.7 2.48 3.00

LL, lower limit; UL, upper limit.
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disregarded.20 Consideration of baseline values
allows drug-induced changes to be directly mea-
sured and may also reduce the impact of interlabora-
tory variation, providing more sensitivity when
identifying safety signals.17

Examining Hy’s law cases with mDISH limits. Hy’s
law cases were identified during treatment of cancer
patients with the HER2/EGFR dual tyrosine kinase
inhibitor lapatinib (Tykerb/Tyverb) in a previous
study.21,22 Liver chemistry data of 20 oncology
patients with HLA markers meeting the Hy’s law
threshold in a targeted safety study were examined
using mDISH thresholds. Based on pharmacogenetic
investigations of lapatinib-associated hepatotoxicity21,22

and previously reported work implicating HLA-
mediated mechanisms in drug-induced liver injury,
specified HLA allele association is considered a

strong and possibly diagnostic indicator of DILI
caused by specific drugs.23 In the case of lapatinib
treatment of breast cancer, a patient who carries at
least one copy of the HLA-DQA*02:01/DRB1*07:01
alleles is more susceptible to lapatinib-associated liver
injury, in comparison with those with homozygous
wild-type alleles.

Using mDISH thresholds of ALT >5� ULN and
total bilirubin >2.7� ULN in conjunction with the
GSK-HOPD data, the patients without the HLA-
DQA*02:01 allele (patients in blue indicated as non-
DQA1*02:01/DRB1*07:01 genotype (X_X)) lie within
this new threshold, and those patients who exceed this
threshold are all specified HLA carriers (Figure 5).
The study was also limited by the age and gender differ-
ences in the oncology and the generally healthy data
sets and the absence of prospective assessment of the
mDISH thresholds.
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Figure 4. mDISH plots of peak fold-baseline ALT and bilirubin in the two subsets of GSK oncology clinical trial data sets with and without liver metastases,
with TRMOD decision boundaries (the false detection probability of 1 in 1000 is used to obtain the TRMOD boundary): (a) patients without liver metastases,
(b) patients with liver metastases, and (c) all together

Table 3. Estimate of threshold limits for fold-baseline ALT and bilirubin with 95% confidence interval for baseline-adjusted data

Marker

Without metastases With metastases Combined

Estimate 95% LL 95% UL Estimate 95% LL 95% UL Estimate 95% LL 95% UL

ALT (�baseline) 7.0 6.20 7.85 6.2 5.29 7.13 6.9 6.25 7.51
Bilirubin (�baseline) 6.0 5.34 6.46 7.0 6.29 8.45 6.5 6.00 7.10

LL, lower limit; UL, upper limit.
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DISCUSSION

The shift to higher values observed in the distribution of
liver chemistry data among patients in GSK-HOPD as
compared with the distribution found in GSK-GHPD
suggests using higher threshold limits rather than the
fixed limit recommended by the FDA (i.e., Hy’s law)
for select populations such as patients in oncology
clinical trials. Threshold limits from patients with and
without liver metastases were not found to vary.
Application of these thresholds appeared successful
in capturing serious DILI cases (adjudicated by hepa-
tologists) with carriage of HLA alleles implicated
in lapatinib-associated drug-induced liver injury
(however, lapatinib studies were not included in the ag-
gregated oncology data sets). These new limits may be
used to modify eDISH to form mDISH to examine both
fold-ULN and fold-baseline liver chemistry data in
oncology clinical studies. These thresholds are untested
in general oncology patients outside of clinical trials
where rare events of acute liver failure related to meta-
static disease are reported.24

The thresholds were as assessed with hepatectomy
models and revealed that after more than half of the
liver is resected, or in this case, replaced by tumor,
bilirubin elevations and evidence of liver functional
impairment may be observed.25 More data are needed
to further evaluate and refine these thresholds to assure
that key safety outcomes are appropriately captured
prior to broad application. Generally, preexisting
thresholds work when monitoring liver safety but
may require determination on a case-by-case basis,
depending on the patient population they are applied

to (e.g., oncology, liver disease, or HCV infection).
Oncology patients, especially those who exhibit
advanced disease, comprise a heavily pretreated
population, and baseline liver values may be elevated
as a natural byproduct of disease progression.
This evidence-based assessment revealed similar

ALT and bilirubin thresholds in oncology patients with
and without liver metastases, which may be a result
of less severely affected liver metastatic patients being
included in the clinical trials. The common practice of
varying study inclusion criteria by the presence or
absence of liver metastases may be unnecessary and
suggests that similar liver chemistry stopping thresholds
may also apply. Evidence-based understanding of
disease-specific liver chemistry thresholds will improve
our ability to sensitively detect safety signals while
enabling the continuation of life-saving treatment.
Adding additional data will further refine these large,
descriptive oncology analyses resulting in enhanced
patient safety and optimization for oncology drug
development. Moreover, it is noted that these results
are hypothesis generating and require follow-up to
evaluate the association between revised liver chemistry
thresholds and clinically relevant outcomes (e.g., acute
liver failure or liver-related death).
Drug-induced liver injury remains a major reason for

termination of medicines during development or the
withdrawal of clinically important medicines after they
are approved.26 Consequently, new methods are needed
to identify liver safety signals and particularly in
patient populations exhibiting baseline liver chemistry
elevations. These results suggest that current FDA’s
Hy’s law limits should be modified for oncology clinical

Figure 5. Plot of peak fold-ULN ALT bilirubin of 20 Hy’s law events observed in an oncology safety study with the new mDISH limit applied. HLA-
DQA*02:01 alleles are associated with lapatinib-related liver injury; heterozygotes are depicted in red circles, and homozygotes are displayed as black trian-
gles. Patients with wild-type HLA alleles appear as blue squares
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trials to avoid the potential of inappropriate discon-
tinuation of life-saving treatments pending confirmation
from larger data sets.
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KEY POINTS
• Thresholds for fold-baseline liver chemistry data
from the oncology clinical trial data have also been
established through the multivariate modeling.

• Multivariate modeling of aggregated historical
oncology clinical trial data yielded more extreme
thresholds than Hy’s law.

• Customized thresholds other than the fixed
Hy’s law limits may be required in oncology
patient populations.
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