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Over a quarter of drugs that enter clinical development fail 
because they are ineffective. Growing insight into genes that 
influence human disease may affect how drug targets and 
indications are selected. However, there is little guidance about 
how much weight should be given to genetic evidence in making 
these key decisions. To answer this question, we investigated 
how well the current archive of genetic evidence predicts drug 
mechanisms. We found that, among well-studied indications, 
the proportion of drug mechanisms with direct genetic support 
increases significantly across the drug development pipeline, 
from 2.0% at the preclinical stage to 8.2% among mechanisms 
for approved drugs, and varies dramatically among disease 
areas. We estimate that selecting genetically supported 
targets could double the success rate in clinical development. 
Therefore, using the growing wealth of human genetic data to 
select the best targets and indications should have a measurable 
impact on the successful development of new drugs.

Attrition is a major challenge in drug discovery and development, with 
more than half of clinical studies failing because of lack of efficacy1–4. 
The widespread failure of preclinical model systems to adequately 
predict efficacy in humans has led drug developers to look for other 
sources of evidence to inform decisions about which targets to pursue 
and for which indications (disease or reason for treatment for which a 
drug is approved). Since the completion of the Human Genome Project  
and the rise of genome-wide association studies (GWAS) and whole-
genome and whole-exome sequencing studies, there has been rapid 
progress in identifying the genes that influence human health and 
disease5. These genetic insights can potentially transform the process 

of selecting the best drug targets and indications6, the key decisions in 
drug discovery. There are several examples of genes associated with 
disease traits that have been proven to be effective drug targets. One 
canonical example is the target for statins, HMGCR, which has been 
associated with serum cholesterol levels7. Several other examples were 
recently highlighted for rheumatoid arthritis8. Such examples and the 
rapidly growing body of human genetic data led us to ask how much 
weight should be given to genetic associations when choosing which 
drug targets to pursue for a desired indication.

RESULTS
In this study, we go beyond previous work on drug repositioning9 to 
investigate how well clinically successful drug mechanisms (the pro-
tein product modulated to elicit a clinical response) are predicted by 
known genetic associations and how that prediction may change across 
the drug development pipeline, from preclinical and clinical phases 
to launched drugs (Drug Approval Process; see URLs). An overview 
of the data sources, filtering and processing applied is provided in  
Figure 1a. To broadly capture statistically significant (P ≤ 1 × 10−8) 
common variant genetic associations, we used GWASdb10, which 
combines data from multiple sources, including the National Human 
Genome Research Institute (NHGRI) GWAS Catalog, the tables and 
supplementary materials of manuscripts archived in the NHGRI 
GWAS Catalog, and the database of Genotypes and Phenotypes 
(dbGaP), among others. To allow comparisons among all data sources, 
we manually mapped all traits to the most specific Medical Subject 
Heading (MeSH) terms applicable. Genetic variants were mapped 
to potential causal genes using a combination of linkage disequilib-
rium (LD), position, expression quantitative trait locus (eQTL) and  
epigenetic data (for example, see Fig. 1b). When we observed multiple 
possible variant-to-gene mappings, these were ranked on the overall  
strength of evidence. In the final data set, we had 18,566 genetic asso-
ciations to 434 MeSH traits that mapped to 6,120 genes outside of 
the extended major histocompatibility complex (xMHC), with a total 
of 13,855 gene-trait combinations. Genes involved in rare, mende-
lian traits were derived from Online Mendelian Inheritance in Man 
(OMIM), providing a data set with 1,898 genes annotated to affect 2,145 
traits with MeSH terms, for a total of 2,627 gene-trait combinations.  
The GWASdb and OMIM gene-MeSH pairs were largely non- 
overlapping, yielding a combined set of 16,459 gene-trait combinations 
(Supplementary Fig. 1 and Supplementary Table 1).
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Information about drugs across the various 
stages of development was drawn from the 
commercial Informa Pharmaprojects data-
base. Of a total of 61,104 drugs (including  
combination therapies; Supplementary Note), 
there were 22,270 drugs known to modulate 
1,824 human non-xMHC drug targets for  
705 indications, giving a total of 19,085 target-
indication pairs (Supplementary Fig. 2 and 
Supplementary Tables 2–4). Aggregation of 
the drug information at the target and indica-
tion levels eliminated redundancies in drug 
mechanisms within the database, such as multiple formulations of 
the same drug or multiple drugs within the same drug class used to 
treat the same indications.

We found that the target genes for drugs approved in the United 
States or the European Union, our definition of ‘successful drug  
mechanisms’, were significantly enriched among genes associated with 
variation in human traits (Fig. 2). The greatest enrichment was for 
genes identified using OMIM (odds ratio (OR) = 7.2, P = 8.9 × 10−74), 
where 206 of 389 (53%) target genes for approved drugs were also 
associated with a mendelian trait, a proportion comparable to that in a 
previous report11. Genes associated with traits through genome-wide 
associations were also significantly enriched (OR = 2.0, P = 2.9 × 10−10),  
particularly when genes were limited to the top-ranked gene for each 
associated variant (OR = 2.7, P = 1.3 × 10−14), with 98 (25%) genes 
in common. However, we also observed that genes considered to be 
classically druggable, having binding domains for small molecule 
drugs12 (n = 2,639), were also highly enriched among OMIM and 

GWASdb genes (OR = 1.9 and 1.7, respectively). To account for this 
relationship, we also assessed the enrichment of genetic associations 
within the druggable subset of the genome. In this analysis, there was 
decreased but still highly significant (P < 1 × 10−3) enrichment of the 
OMIM and top GWASdb genes (OR = 4.5 and 1.6, respectively). There 
was little added enrichment when considering the combined effects 
of OMIM and GWASdb. One potential explanation for the correla-
tion between successful drug targets and evidence of genetic effects 
is that genes that result in notable phenotypic changes when altered 
are also the most responsive to drug-induced alterations. The greater 
enrichment among successful targets of genes that give rise to men-
delian disorders in comparison to those involved in complex traits 
supports this explanation. Residual variance intolerance score (RVIS) 
was recently developed to assess the tolerance of a gene to mutational 
perturbation13. We observed a statistically significant association 
between genes falling within the lower quartile of the RVIS distribu-
tion (most intolerant to change) and approved drug status (OR = 2.1, 
P = 7.7 × 10−10). However, conditioning on RVIS had little impact on 
the effect of OMIM and GWASdb association status and hence is an 
independent predictor of target success and not an explanation for 
the effect of genetic associations (Supplementary Note).

The analysis above did not take into account alignment between  
the drug indications and the associated traits. Therefore, we next 
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Figure 1 Summary of data resources and 
mappings between them. (a) Summary of 
each data resource and the key filtering and 
processing steps applied to create the final 
set of gene-trait and drug target–indication 
combinations investigated in this study. 
GWASdb sources correspond to unique PubMed 
IDs or other unique data sources given for 
each association. GAD, Genetic Association 
Database. (b) An example of the approach to 
map genetically associated variants to genes, 
illustrated with the bone mineral density GWAS 
association with rs9533090 (depicted in red). 
Of five SNPs in strong LD with rs9533090  
(r2 ≥ 0.8), one falls within a DNase I–
hypersensitive site (DHS) that was found to have 
a sensitivity signal correlated with the DHS of 
the TNFSF11 gene transcription start site (TSS).
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Figure 2 Enrichment of target genes for drugs approved in the United States 
or the European Union. Associations are shown for all 22,012 coding genes 
(top half) and for 2,555 classically druggable genes (bottom half). Target 
enrichment is estimated for genes in OMIM, genes with any connection with 
a GWASdb association, only the top gene for each GWASdb association, 
genes in OMIM or the top GWASdb gene, and genes in the lower quartile 
of the RVIS distribution. Odds ratios with exact 95% confidence intervals 
were estimated from 2 × 2 tables of the status of each gene as a drug target 
versus status in the above categories (Online Methods).
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investigated the percentage of approved target–indication pairs  
with a corresponding genetic association tied to the same gene for a 
similar trait. Using the structure of the MeSH hierarchy to estimate 
indication-trait similarity14 (Supplementary Fig. 3), we found that 
239 of 395 (61%) approved drug indications had at least 1 genetic 
association (OMIM or GWASdb) with a similar trait (relative simi-
larity ≥ 0.7) and that 158 (40%) approved indications had at least  
5 associations reported. The approved drug indications having fewer 
than five genetic associations—such as anxiety, depression, headache, 
coronary restenosis and kidney stones—included both diseases where 
many studies have been done with little success and understudied 
areas of medical interest currently lacking substantial genetic inves-
tigation (Supplementary Table 5).

To assess the support that a genetic association provides to drug 
mechanisms, we focused on the subset of 158 approved drug indica-
tions with at least 5 genetic associations for a similar trait, taking this to 
signify that the indication has been reasonably well studied by genetic 
approaches (that is, focusing on instances where an opportunity exists for 
genetic data to support the target indication; Supplementary Table 5).  
Of 820 target-indication pairs, 67 (8.2%) were supported by one or 
more genetic associations when considering the combined evidence 
of both OMIM and GWASdb (Fig. 3a and Supplementary Table 6). 
Further, we found that there was significant variability among indica-
tion categories (P = 1.1 × 10−16; Fig. 3a), with the highest degree of 
genetic support for indications related to musculoskeletal, metabolic 
and blood categories (percent overlap of greater than 30%) and little or 
no genetic support for oncology, skin, eye and digestive categories. We 
observed that there was slightly greater support with GWASdb than 
with OMIM (4.5% versus 4.1%, respectively; Fig. 3b, Supplementary 
Figs. 4–6 and Supplementary Table 7), although the overlap with 
OMIM represented a much larger fraction of the total number of 
OMIM gene-trait associations in comparison to GWASdb (1.2% versus  
0.27%, respectively). These results were somewhat sensitive to restrict-
ing the indications to those that had varying levels of genetic support, 
although a cutoff of at least five associations per indication yielded 
the best tradeoff between the number of indications considered and 
overall genetic support (Supplementary Fig. 7).

If genetic association data are predictive of successful mechanisms 
of action, then we would expect the percent of target-indication pairs 
with genetic evidence to increase the further the corresponding drug 
has progressed in the drug development pipeline, with approval 
representing a mechanism that has passed the highest evidentiary 
standards. This is just the pattern that we observed when consider-
ing OMIM and GWASdb together or separately (Fig. 3b), where in 
each instance the enrichment of genetic support for target-indication 
pairs was the lowest in phase I and increased in subsequent phases 
through drug approval. The genetic support increased from 2.0% 
for target-indication pairs that had only progressed as far as phase 
I clinical trials to 8.2% for approved drugs, over a fourfold increase, 
suggesting that the odds of successful drug mechanisms with genetic 
support are many times greater than without. For new mechanisms 
in early development, we cannot rule out the influence that relatively 
recent GWAS may have had on the choice of targets and indications; 
however, accounting for such an influence would lead to an upward 
bias in the estimated overlap at that early stage and a downward bias 
in the increase in enrichment with progression. It is also possible that 
the reporting of successful drug mechanisms has influenced some 
gene-trait annotations that have been added to OMIM, although an 
informal review of several entries did not find this to be a likely con-
tributor. The enrichment of genetic support we observe here is con-
sistent with a recent AstraZeneca portfolio review3. Among 38 phase 
II programs, an OR of 3.5 (95% confidence interval (CI) = 0.73–20.6, 
P = 0.10) was observed in comparing the genetic support for projects 
that progressed to that for projects that did not.

DISCUSSION
On one hand, there are limitations to the ability to identify the genes 
that are causally related to a genetic association, which, given our inclu-
sive strategy to map all possible causal genes, could inflate our estimate 
of the proportion of successful drug mechanisms with genetic support. 
On the other hand, the information available about the functional 
genomic landscape is incomplete, and there will be many causal rela-
tionships left undetected or ascribed to the wrong gene, resulting in a 
bias of the enrichment estimates toward the null. However, the growing  
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body of functional genomic information will continue to improve the 
ability to correctly ascribe a molecular pathway by which genetically 
associated variants influence traits. Such data can also help identify 
the causal mechanism underlying the association and inform what 
treatments could lead to a positive outcome in patients. In addition, 
catalogs of genetic variants that influence human traits are far from 
complete, which would lead to an underestimation of the proportion 
of drugs with genetic support. We have identified a number of thera-
peutic areas where there are large gaps in knowledge about the genetic 
factors involved, divided evenly across the pipeline (Supplementary 
Fig. 8). We advocate continued support for research on the genetics 
of these areas to aid in the development of more effective treatments. 
The availability of a precompetitive genetic resource similar to that 
produced for the purposes of this analysis that integrates all known 
genetic associations with measures of statistical confidence, using a 
common trait ontology, and integrates the most recent sources of func-
tional genomic information to list and rank potential causal pathways 
would be an invaluable tool for the drug discovery process.

Another potential source of bias is that genetic associations could 
already be driving decisions on which drugs make it into clinical 
development and for which indications. Although this would have 
affected a small subset of the historical drug data, given that drug 
discovery and development timelines generally extend back well over 
10 years, the impact of this bias would be to increase the proportion 
of drugs with genetic evidence earlier in the pipeline, leading to an 
underestimation of the relative benefit of genetic support. There may 
also be instances where known mechanisms for drugs could lead to 
targeted genetic research that finds supporting information, which 
would disproportionately affect the overlap with approved drugs. 
We would not expect these biases to measurably affect the GWAS-
based results. However, there is greater potential for the manually 
curated results in OMIM to influence target selection or for drug 
targets to influence genetic research. We reviewed the 39 OMIM 
genes and traits that overlapped approved drug targets and indica-
tions (Supplementary Table 6) and found several potential instances 
where genetic information led to the development of therapeutics, 
including use of the gene product as a therapeutic, as in the case of 
von Willebrand disease where von Willebrand complex is used in 
treatment. This finding partially explains the greater overall enrich-
ment of targets associated with traits in OMIM.

Ultimately, we want to know the probability that a therapeutic agent 
that properly engages the target protein at safe and efficacious doses 
in the relevant tissues will have the intended effects to prevent or treat  
disease in patients3,4. Several pieces of information required for a thor-
ough analysis are missing from the public domain; most notably, there are 
relatively few data available on drugs that failed in clinical development 
and the reasons for these failures (Supplementary Note). However, with 
the historical information available on drug and, hence, target-indication  
progression through the clinical pipeline, we can derive estimates of the 
value the support of genetic information brings. Given the observations 
in our data, we estimated the ratio of the probability of progressing in 
the drug development pipeline given that the drug mechanism has the 
support of genetic information to the probability of the drug progress-
ing without genetic support (Table 1 and Supplementary Note), where 
we considered support from GWASdb and OMIM in combination as 
well as separately. OMIM support yielded a slightly higher probability 
of success than GWASdb support. We estimated that genetic support 
had the largest impact on the probability of progressing from phase II 
to phase III (ratio = 1.5, combined), with the next largest impact for  
progression from phase I to phase II (ratio = 1.2, combined); the smallest 
apparent contribution was for progression from phase III to approved 

status (ratio = 1.1, combined). We also estimated the converse ratio of 
the probability of failure to progress in the absence of genetic support 
versus with support (Supplementary Note). As expected, we found 
that, overall, target-indication pairs that entered clinical development 
that lacked genetic support were significantly less likely to reach drug 
approval (ratio = 1.3, 95% confidence interval = 1.2–1.5, combined), 
and the lack of genetic support in progression had the greatest impact 
earlier in the drug development process.

The relatively low impact of genetic support on success in phase III 
is surprising, given that attrition rate estimates attribute most phase 
III failures to lack of efficacy2. It may be that failures in phase III are 
different in nature from those in earlier stages, for example, because 
they may reflect a failure to improve over standard of care rather than 
failure of the targeted biological mechanism to be causal for disease  
at all. Or it may be that, in phase III, study endpoints are more  
complex and less closely related to specific biological mechanisms, 
including the use of broad endpoints such as all major coronary events in 
cardiovascular outcome studies. In addition, we note the limitations of 
the available data. We rely on the latest stage to which a target-indication  
pair was reported to have progressed as a proxy for success and failure, 
although such data may be incomplete or even inaccurate in some 
cases. Furthermore, the interpretation of risk ratios is dependent on 
the absolute risk, which varies substantially by phase.

Overall, we estimate that drug mechanisms with genetic support 
would succeed twice as often as those without it (from phase I to 
approval). Therefore, increasing the proportion of discovery and 
development activities focused on targets with genetic support and 
allowing genetic data to guide selection of the most appropriate indi-
cations should lead to lower rates of failure due to lack of efficacy in 
clinical development.

URLs. Drug Development Process, http://www.fda.gov/downloads/
Drugs/ResourcesForYou/Consumers/UCM284393.pdf; GWASdb, 
http://jjwanglab.org/gwasdb; Online Mendelian Inheritance in Man  
(OMIM), http://www.omim.org/; MeSH browser, https://www.nlm.nih.
gov/mesh/MBrowser.html; UMLS::Similarity, http://www.d.umn.edu/
~tpederse/umls-similarity.html; PharmGKB, https://www.pharmgkb. 
org/; Genetic Association Database, http://geneticassociationdb.nih.
gov/; Informa Pharmaprojects database, http://www.citeline.com/;  
MeSH thesaurus, http://www.nlm.nih.gov/mesh.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

Table 1 The relative value of genetic support for the probability 
that a target-indication pair progresses along the drug development 
pipeline, based on historical drug trial information

p (progress | genetic support)/(progress | no genetic support)

Progression GWASdb and OMIM GWASdb OMIM

Phase I to phase II 1.2 (1.1–1.3) 1.2 (1.1–1.3) 1.2 (1.1–1.3)

Phase II to phase III 1.5 (1.3–1.7) 1.4 (1.2–1.7) 1.6 (1.3–1.9)

Phase III to approval 1.1 (1.0–1.2) 1.0 (0.8–1.2) 1.1 (0.9–1.3)

Phase I to phase III 1.8 (1.5–2.1) 1.8 (1.4–2.1) 1.9 (1.5–2.3)

Phase I to approval 2.0 (1.6–2.4) 1.8 (1.3–2.3) 2.2 (1.6–2.8)

Values give the ratio of the probability of a target-indication pair progressing  
given genetic support to the probability of progressing without genetic support;  
95% confidence intervals are given in parentheses.

http://www.fda.gov/downloads/Drugs/ResourcesForYou/Consumers/UCM284393.pdf
http://www.fda.gov/downloads/Drugs/ResourcesForYou/Consumers/UCM284393.pdf
http://jjwanglab.org/gwasdb
http://www.omim.org/
https://www.nlm.nih.gov/mesh/MBrowser.html
https://www.nlm.nih.gov/mesh/MBrowser.html
http://www.d.umn.edu/~tpederse/umls-similarity.html
http://www.d.umn.edu/~tpederse/umls-similarity.html
https://www.pharmgkb.org/
https://www.pharmgkb.org/
http://geneticassociationdb.nih.gov/
http://geneticassociationdb.nih.gov/
http://www.citeline.com/
http://www.nlm.nih.gov/mesh
http://www.nature.com/doifinder/10.1038/ng.3314
http://www.nature.com/doifinder/10.1038/ng.3314
http://www.nature.com/doifinder/10.1038/ng.3314
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ONLINE METHODS
Genetic data. Genetic association data were drawn from the data available 
in GWASdb10 (version dated 21 May 2013), a manually curated database 
that brings together information from eight sources. We excluded all data 
from PharmGKB and the Genetic Association Database. Genetic associations 
reported from these two sources contained no supporting statistical associa-
tion evidence (with most P values equal to zero) to accompany the entries, 
and the new associations included were largely drawn from candidate gene 
association studies that lacked rigorous criteria for reporting a statistical asso-
ciation. In particular, we found that there were a large number of candidate 
gene associations in PharmGKB for drug target genes, which would result in 
an upward bias in the number of drug targets with supposed genetic asso-
ciations. We also excluded a few large metabolomic studies with numerous 
traits screened that had very large numbers of associations reported. Finally, 
we identified one study15 where a supplementary table was misinterpreted, 
leading to many falsely identified associations that were also excluded. For the 
variants, traits and P values reported, we removed any duplicate entries found 
across the various GWASdb data sources. For the purposes of this study, we 
set a P-value threshold of 1 × 10−8 to limit associations to those with relatively 
strong evidence. The OMIM database (accessed 3 October 2013) was used  
to provide additional information on the effects of genetic variants and  
mutations on human traits. Only entries with valid MeSH terms were included 
in the analyses reported here.

Genetic variant-to-gene mapping. Variants with phenotypic associations were 
mapped to the genes that they could be causally affecting through a combina-
tion of approaches. First, all variants in LD having r2 ≥ 0.5 with each associated 
variant were identified on the basis of the 1000 Genomes Project pilot sequence 
genotypes for the European-ancestry (CEU) population16. No effort was made 
to conduct LD pruning to represent independent associations as the purpose 
of our study was to identify all possible genes that could be responsible for the 
observed effect. For each variant in LD, the plausible mapping of a variant to 
a particular gene was performed using a combination of physical proximity 
to the gene, evidence for association of the variant with the expression of the 
gene and determination of whether the variant fell within a regulatory element 
predicted to affect the expression of the gene. The variant was mapped to the 
physical location of the gene plus or minus 5 kb on the basis of the longest 
gene transcript to define the gene boundaries plus 1.5 kb in UCSC-distributed 
RefSeq (v37.1) annotation. Gene eQTLs were drawn from eqtl.chicago.edu 
(accessed 21 May 2013), which includes eQTLs from several studies of several 
cell lines and primary tissues as well as the results from primary liver tissue17 
at false discovery rate (FDR) ≤ 0.1, computed by Kruskal-Wallis test. To map 
variants to genes on the basis of regulatory evidence, we identified all variants 
that fell within a predicted transcription factor binding site located within 
a DHS peak using RegulomeDB18 (accessed 7 February 2013). For variants 
with a RegulomeDB score ≤4, we determined whether the genomic location 
overlapped a DHS peak that was either located with a gene TSS or a distal 
DHS peak that was correlated with a TSS DHS across cell lines, as described19 
(data courtesy of J. Stamatoyannopoulos, University of Washington). Variants 
that affected the amino acid sequence of any gene transcripts were identified 
via the Ensembl Variant Effect Predictor from the European Bioinformatics 
Institute (EBI; accessed 27 February 2014). We restricted our analyses to genes 
reported in GENCODE (v17) or RefSeq (v37.1).

In many instances, a variant with a phenotypic association could be 
mapped to more than one gene using this combination of approaches.  
We devised an ad hoc scoring scheme to assess the relative weight of evidence  
for a causal relationship between the variant reported to be associated and 
each gene to which it was mapped (Supplementary Fig. 9), including the  
source of the association, the LD between the associated variant and  
the variant mapped to the gene, the nature of the mapping information  
and the number of times that the variant in LD had been associated  
with the trait. This scheme yielded a potential gene score between 0 and 
11, with 11 reflecting the strongest evidence. The factors included in the 
gene scoring scheme were also used to rank the variant-to-gene mappings, 
such that the top-ranked gene for a particular variant presumably had the 
strongest evidence (Fig. 2). When two gene mappings had equal support,  
the ranking was arbitrarily decided.

Drug data. Information about drugs, their gene targets, the indications for 
which they have been investigated and the latest stage of development to which 
they have progressed was derived from the commercial Informa Pharmaprojects 
database. Drugs were retained for analysis if (i) they were annotated to have 
human gene targets (on the basis of GENCODE v16), (ii) the gene did not map 
to the xMHC and (iii) the indication could be mapped to a MeSH term. Most 
analyses using Pharmaprojects were conducted using a transformation of the 
data into a single entry per gene target and indication with the latest phase in 
development to which that unique combination progressed for any drug. A 
target was defined as successful in treating an indication if a drug targeting 
that gene product was approved for the corresponding indication in the United 
States or the European Union, as annotated in Pharmaprojects.

Medical Subject Heading term mapping and use. We used the MeSH  
thesaurus to provide a common vocabulary among traits from GWASdb and 
OMIM and indications from Pharmaprojects. MeSH term mappings to OMIM 
traits was derived from Comparative Toxicogenomics Database mapping20. 
Mappings for GWASdb and Pharmaprojects were performed manually using 
the MeSH Browser by searching with each of the unique original terms listed 
in the respective database and identifying the overall best match. Some traits 
did not yield a satisfactory MeSH term. Any data entries missing MeSH terms 
were excluded from the primary analyses described in this study.

When comparing the overlap between traits with respect to evidence for 
genetic association and drug indications, we recognized that there could be 
many instances where the genetic evidence was for a trait very closely related 
to the indication but not an exact match. To allow for such near misses, we used 
similarity measures based on the MeSH ontology, implemented in the UMLS::
Similarity Perl module14. Several measures of similarity and relationships are 
implemented in this package. We evaluated all of these measures on a subset 
of 50 randomly selected MeSH entries from our combined data set to assess 
how well the subsequent trait clustering reflected expert interpretation. On the 
basis of this evaluation, we selected two similarity measures that incorporated 
both path distance and information content, Resnik21 and Lin22. The measures 
were standardized to a measure of relative similarity between zero and one and 
averaged together to yield a final relative similarity measure for subsequent 
analysis. We noted that in some instances, because of the structure of the MeSH 
ontology, very closely related traits resulted in very low measures of similar-
ity. Two examples are systolic or diastolic blood pressure with hypertension 
and bone mineral density with osteoporosis. To address this, we reviewed the 
laboratory-based MeSH terms and manually assigned relative similarity scores 
of 0.5, 0.7 and 0.9 on the basis of the known relationships between traits. The 
two examples above were assigned a relative similarity of 0.9. The manually  
assigned relative similarities are given in Supplementary Table 8. The relative  
similarity matrix used for the analyses is available in Supplementary  
Data Set 1. Each MeSH term was subsequently manually mapped to 1 of 20 
disease categories (Supplementary Table 9).

Genetic association enrichment. We assessed enrichment of genetic associa-
tions both without and with respect to the trait underlying the association. 
We assessed enrichment without respect to trait or indication as presented in 
Figure 2 by constructing a 2 × 2 table of genes in GENCODE (v17) or RefSeq 
(v37.1) and counts corresponding to the presence or absence of the gene as a 
target for a drug approved in the United States or the European Union versus 
the presence or absence of evidence for genetic association for each gene.  
Evidence of genetic association was further stratified by OMIM, any possible 
gene for each GWASdb association and the top gene (top ranked, as described 
above) for each GWASdb association. Enrichment for RVIS was based on 
published scores13, with stratification for the lowest quartile. The druggable  
genome was based on the description of Hopkins and Groom12. Odds  
ratios and 95% confidence intervals were estimated using the exact method 
implemented in fisher.exact in R.

The overlap between genetic evidence and drug targets presented in Figure 3,  
taking traits and indications into account, was based on the direct overlap 
of gene and target names with a relative trait-indication similarity of at least 
0.7. The confidence intervals presented were computed using the Pearson-
Klopper exact method implemented in the binom package in R. A permutation 
test (Supplementary Fig. 10) was performed to assess the significance of the 
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observed overlap given the high degree of correlation among genes and traits 
in the data. In the permutation test, the null distribution was simulated by 
breaking the relationships between traits and genes in the genetic association 
data. This was done in a manner to maintain the relationships among genes 
associated with the same trait by permuting the traits and replacing all asso-
ciations for the observed trait with the same permuted trait (for example, by 
replacing all genes originally associated with alopecia with those associated 
with type 2 diabetes in permutation 1, with those associated with Kawasaki 
disease in permutation 2, etc.). We conducted 10,000 replicates.

All statistical analyses were conducted using R version 3.1.0 (ref. 23). Most 
figures were created using the R package ggplot2 (ref. 24).

Code availability. The R scripts and Sweave files used to process the data 
and conduct the analyses described herein are available from the authors  
by request. All key analyses can be reproduced from Supplementary Data 
Sets 1–4 and the supplementary tables included.
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