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Abstract— High dimensional data on its own poses several
difficulties when applying traditional statistical modeling
methods. Adding a time series component imposes an even
heftier burden on finding methods capable of dealing with
causation and prediction modeling with multivariate data.
Often we are faced with the proposition of being able
to answer only one question at a time, especially with
regards to electronic medical records, and each of these
analyses can take days to complete using a method such
as Bayesian logistic regression. Here we propose a method
for reducing the parameter space of high-dimensional data
through imaging in order to enable simultaneous evaluation
of multiple parameters. Finally, we evaluate some of the
limitations found when attempting to apply some widely used
image comparison algorithms to the resulting imaged data.
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1. Introduction
There is a great deal of interest in being able effec-

tively to analyze large observational data sets. However,
the challenges in this arena often stem from the fact that
we are typically looking at several different parameters
of interest and their interactions over time. There is an
information overload problem, not simply a data overload
problem. While it is true that the amount of data collected
is growing at increasing rates, the complexity of that data
is also increasing. Therefore, the value that is to be gained
from improvements in the mechanisms for navigating data
of high levels of complexity will only increase as time goes
on.

It may be fruitful to begin thinking about large data in
a different way. This investigation proposes that in order
to reduce the high-dimensionality of longitudinal data, the
parameter space be shrunk to a 2-D visual representation in
order to take advantage of image comparison methods rather
than using traditional statistical analysis of multivariate data.
While it is not clear whether any benefit may arise from
thinking of high-dimensional data in this way, we create
a framework for evaluating the merits of this approach and
enable the possibility of future research into the effectiveness
of imaging longitudinal high-dimensional data as a means
for navigating large data sets. In particular, we apply this

method to patient data captured in large electronic medical
records systems.

2. Framework
This system proposes a framework show in Figure 1

whereby observational data is transcribed into an image rep-
resenting each patient within a large observational database.
Multiple parameters of interest are represented within a
single image.

Those images are then compared to one another using an
image comparison algorithm to generate a distance metric
between two individuals within a single database. Once
a distance metric is in place, it can then be used in the
generation of a graph represented by a symmetric distance
matrix whose nodes consist of individual patients where
every edge of the graph is weighted with the distance found
between them. The weighted graph can then be employed to
explore large observational data sets quickly by using graph
theoretic methods.

Consequently computation is relegated simply to walking
the graph rather than having to evaluate each patient one
condition or drug at a time. The sequence of events relative
to each patient is accounted for by mapping the events
occurring within each patient across a time axis.

Figure 1: Imaging Framework Overview



2.1 Types of Data
The idea of “information overload” has come to meet the

modern investigator head on. As Toffler remarked: “When
the individual is plunged into a fast and irregularly changing
situation, or a novelty-loaded context . . . his predictive
accuracy plummets. He can no longer make the reasonably
correct assessments on which rational behavior is depen-
dent.” (1)

Such is the case with the modern landscape of business
intelligence and analytics today. The ultimate vision is that
the more data we have at our disposal, the more informed
our decision making process will become and the more our
predictive accuracy and understanding of why things are
the way they are will also improve. These are the goals
of modern data mining and statistical methodology; yet
delivering those results in real time is still rather difficult and
requires huge investments in machinery capable of analyzing
vast data by looking for patterns among all the variables of
interest.

Woods, Peterson and Roth identified three problems facing
the avalanche of data overload: the clutter problem, workload
bottlenecks - where there is simply too much to do and too
little time to do it in, and finding significance within the
data. (2). These are issues still facing us today, and we hope
to address each through a novel application of visualizing
data. The visualization of patients is not necessarily for the
implicit ability to view data by an observer, but to place the
issue of comparing images directly to the computer in hopes
that with enhanced image analysis techniques we can begin
to extract meaningful relations between patients exhibiting
observations in complex parameter spaces.

While the impetus driving the research presented here is to
find new methods for coping with the growing complexity
of large scale observational data as it relates to electronic
medical records, insurance claims data and the like, the
framework should be extensible to other types of data ex-
hibiting similar characteristics. This includes any data which
is collected over time, such as customer preferences, product
rating data, purchasing history or more complex applications
which track several different, yet related areas of interest
over time. Also included might include applications as
diverse as manufacturing resource allocation as it contributes
to the overall sales performance and product distribution
needs of a company over time.

2.2 Multiple Parameters
In the field of electronic medical records (EMR), elec-

tronic health records (EHR), insurance claim and private
practice data, these systems aim to capture multiple param-
eters of interest regarding patient health over the time span
of coverage for any given patient. Electronic medical record
systems are generally more inclusive since it serves as a
singular repository for collecting all the information about a

single patient over a long period of time. The period of time
covered could include the entire life-span of an individual.

Effectively representing this data for patient-to-patient
comparison poses many problems. First is the issue of
representing multiple parameters effectively. Fodor notes that
“traditional statistical methods break down partly because
of the increase in the number of observations, but mostly
because of the increase in the number of variables associated
with each observation” (3).

In large observational data, the drugs that any given patient
takes are typically coded in one particular coding scheme
while the observations (the medical conditions any particular
patient experienced or was observed as having) are recorded
in yet a different terminology.

In RxNorm and similar drug ontologies, there are over
14,000 products indicated at the lowest level and medical
conditions and observations may be represented by one of
over 100,000 values found in the Read1 terminology for
example. Since the average lifespan of a given person could
exceed more than 70 years, representing the multitude of
potential events, drugs, and medical conditions a person
experiences over an entire lifetime seems at first like an
impossible task to manage, and yet, we must be capable of
comparing this patient to millions of other unique patients
within the database who have their own unique combinations
of events over time.

There may also be interest in other parameters beyond
just drugs and conditions, such as various laboratory values
and measurements recorded such as blood pressure, height
and weight and other factors that are taken into account
over the entire data collection period of any given patient
within a health care setting. Similarly, with more complex
web applications where several systems are merged together
to provide seamless integration of services, the overlap of
system services might pose similar data collection issues
where several events occur simultaneously, yet possibly un-
related directly to one another across thousands of potential
users.

By thinking of each parameter as an individual axis within
an image, we can begin to imagine a scheme by which
each category of potential values could overlap and give a
single composite image consisting of competing parameters
over time to represent a patient, a customer or a business
process in the real world. The x-axis in each of these images
would represent the time component so that as the patient or
customer becomes older in the system either new entries are
appended onto the image with either the axis fixed at some
point in time relative to the individual (such as the date of
birth), or all the images generated have a fixed axis.

The advantage to fixing the x-axis for every single person
to the date of birth, at least for patient data, is that trends
occurring at specific points in time of life will emerge among

1The Clinical Terms Version 3 (Read Codes)© are maintained by the
(UK) National Health Service Information Authority.



all the patients at similar points in time, with a slight shift
to either the left or right, depending on whether a series
of events occurs earlier or later in life. If one were to fix
the axis in time from a specific event, then this might make
more sense for business oriented data where you want to
investigate product trends at various points in time, and to
use that to help predict future needs more consistently.

2.3 Image Comparison Methods
Once you have the capability to create an image and

have addressed the x-axis issue of how to fix the events in
time, you can then begin thinking of ways to compare those
images. For the initial work presented here, the algorithm
PerceptualDiff (4) was used to generate a distance measure
between any two individual patients.

Image comparison methods at this point are still limited
for the application of comparing sparse images as generated
from our initial sample of patients.

2.4 Distance Metrics
By using the image comparison tools, we generate a

distance metric between any two images. This in turn can
be used to generate a graph where each node on the graph
represents an observed data point comprised of several
multivariate observations over time (a patient in our case)
and the distance between those nodes is equal to the output
of our image comparison algorithm.

In the case of PerceptualDiff, the output generates a pixel
count difference which we can use to populate the graph
of distance measures between each and every single patient.
“These metrics perform signal processing on the two images
to be compared, mimicking the response of the human
visual system to spatial frequency patterns and calculating a
perceptual distance between the two images.” (5)

The distance metric is vital to making effective use of
the graph generated from image comparison in this type of
framework. Any significant statistical analysis imposed over
the edges of the graph will depend on the meaningfulness of
this metric (6) (7) (8). Therefore, if there are improvements
to be gained from future research, it is in finding more
advanced image comparators that can generate a distance
metric which takes into account various attributes of the
imaged data and not simply a pixel by pixel comparison
as is done in PerceptualDiff.

3. Imaging Longitudinal Data
Our initial effort was to attempt to generate an image rep-

resentative of a patient or customer taking into account that
events happen in a specific order over time. For electronic
health records, we are primarily interested in two parameters:
the drugs a patient takes and the medical conditions which
are observed prior to and after the drug events.

Each of these parameters occupies a space of potential
variables which denote a drug or a medical condition. The

JFreeChart (9) library was employed to generate an XYPlot
of each patient utilzing multiple series to represent each
parameter space.

JFreeChart was not the initial choice for imaging the data.
Initial work was done using the matplotlib Python library
(10). While matplotlib offered many features that were
attractive to this type of application, ultimately, the images
generated by this library were too large in size for scaling up
the framework for production levels. The JFreeChart library
allowed for finer grained control over the image creation
process, including allowing us to specify transparency levels
within the image. By making use of this feature, the images
generated from JFreeChart averaged around 9kb, while the
images generated from matplotlib exceeded 70kb per image.

The size of the image has an enormous impact on the
ability of PerceptualDiff to calculate its distance metric. The
initial images from matplotlib took over a minute and a half
to calculate the distance between two patients (and required
more than 500MB of system memory), while the smaller
images generated from JFreeChart could be compared in less
than 20 seconds.

3.1 Parallel Spaces
Since each parameter is realized by most patients in our

database, it is necessary to include both parameters (drugs
and conditions) within a single image. For future work, we
would also hope to include even more parameters, such as
laboratory values, other health factors (e.g. weight), and so
on. Each parameter adds to the number of spaces which must
be accommodated within the image itself.

Again, multiple parameters need to be represented on a
single axis to aid in reducing the overall image size of
generated. As noted in the previous section, the larger the
size of the images, the more compute time is required to
make a comparison between images.

Inselberg observes that “visualization provides insight
through images, and can be considered as a collection of
application-specific mappings.” (11). He speaks of the Carte-
sian plane as a mechanism for enabling not just 2 or 3 dimen-
sion representations, but allows us to simultaneously map N-
dimensions with parallel coordinate systems. Extending this
idea, we can create multidimensional mappings in 2-D space
by extending not the number of coordinate systems, but
rather the representations within a single coordinate system
through a color “dimension”. In the case of overlapping
elements within a single 2-D space, we can represent those
points through yet a third or fourth color indicating that
there is more than one x event occurring at a particular
y-coordinate. For n-dimensions, this can be accomplished
through (2n − 1) number of colors (Mersenne prime num-
ber). For example, with two parameters, an overlap would
require a third color. For three parameters, you would need
three colors to represent the base parameters, three for the
occurrence of two simultaneous events and a final color if



all three parameters occur at the same time for a total of
seven colors.

For example, let P = {a, b, c . . .} be parameters of
interest to graph on parallel axis. Then the number of
colors required to represent the possible combinations of
simultaneous events on the y-axis follows:

C2 = {(a, b)(ab)}
C3 = {(a, b, c), (ab, bc, ac), (abc)}
C4 = {(a, b, c, d), (ab, ac, ad, bc, bd, cd), (abc, abd, bcd, acd)

and subsequently, |C2| = 3, |C3| = 7 and |C4| = 15.
From this pattern, it is observed that there are Mn =

2n−1 colors required. In order to create a 2-D visualization,
we simply add a new series in the output of JFreeChart’s
XYPlot or, in effect, add an additional color to represent
multiple parameters within a single image. In the case of
multiple parameters occurring within the same point in a
single image, those events may be expressed by using yet
another color to represent an overlap of parameter spaces.

3.2 Parameter Space Reduction through Onto-
logical Mapping

As noted earlier, the parameters of interest in the patient
data we are analyzing is primarily composed of drug ex-
posure data and observed or reported medical conditions
over time. When a patient receives a drug prescription, it
is typically indicated that the drug be taken over some
length of time, and therefore, those become known as “drug
eras” (12) which indicate the start and end date of an
exposure period for some time duration found in the patient’s
recorded medical history. The number of possible drugs in
this parameter space exceeds 14,000 branded names and
strengths.

The point of most traditional statistical analysis has been
to distinguish the signal from the noise, addressing the third
point of the data overload problem mentioned by Woods
(2). However, these methods mostly attempt to look at
each parameter one at a time (3). The benefit of applying
ontological mappings to the data extracted for each database
member is that in essence there is no need to a priori identify
those parameters which have little or no impact on predictive
value, but rather, those observations which do have meaning
should become apparent through the image comparison
algorithm. Patterns which reoccur at high frequency should
begin to emerge and announce themselves by a relatively
lower distance between patients exhibiting similar behavior
over time.

However, by applying an ontology such as RxNorm or
SNOMED CT’s drug and medicament hierarchy (13), many
of these individual drugs will collapse from low level drug
references into higher level categories which relate similar
drugs together in a meaningful way. Similarly, we can apply

the same strategy to mapping one of the over 100,000
medical conditions into higher level categories which relate
similar concepts to one another.

3.2.1 Proximity Based Positioning of Related Concepts

In the Read coding system, there is a hierarchical structure
contained within the coding scheme, but neither the breadth
nor depth of this hierarchy is consistent throughout the codes
which annotate it. The first image shown is a single patient
with multiple drug and condition events recorded starting
around the age of 40. The raw data is unorganized, and
covers a multitude of medical conditions seen in Figure 2.
In the next image, Figure 3, we see the same patient utilizing
the MedDRA2 hierarchy to organize those same conditions
into regionalized areas that are closely related. The MedDRA
hierarchy serves as our reference system and we mapped the
Read codes into it by way of the Unified Medical Language
System Metathesaurus3.

Figure 2: Raw Patient Data

Once the mapping was completed, we were able to make
use of the strict 4-level hierarchy (14) found within the
MedDRA terminology to collapse each medical condition
into a single high level category and also into a secondary
group level mapping. This is shown in the final image of
the patient in Figure 4. Now it is apparent that the pixels
representing medical conditions (in blue) are arranged in a
more organized manner as the ontology reduces the overall
parameter space from 100,000 or more condition categories
to less than 20,000 high level categories and even fewer
group level terms.

2MedDRA® (Medical Dictionary for Regulatory Activities) is a regis-
tered trademark of the International Federation of Pharmaceutical Manu-
facturers Association

3UMLS Metathesaurus is a project of the (US) National Library
of Medicine, Department of Health and Human Services. Available at:
http://www.nlm.nih.org/research/umls/



Figure 3: MedDRA Hierarchy Applied to Conditions

Figure 4: MedDRA Group Level Abstraction

3.3 Captured Time Component

By default, the allocation of events on our X,Y coordinate
plane takes into account the longitudinal nature of the data
we are evaluating. Many of the statistical methods, such
as logistic regression or a priori basket analysis, typically
used in epidemiological studies fail to capture the time
component. In such methods, we are simply looking at
whether or not two events occur within a patient’s observed
record.

By placing the events sequentially along the X-axis, we
expose within the image not only the proximity of closely
related concepts, but also put them in their proper context
with respect to time. For example, if a patient were to
develop high blood pressure followed by a diagnosis of
diabetes, we might see at some later point in life a cardiac
event. The time component is accounted for by placing
each of these events in a sequential ordering. The image
comparison will take into account all of these factors when
creating a distance measure between any two patients.

4. Image Comparison
Once we have generated the images representing our

patients, the next step is to apply an image comparison
algorithm in order to calculate a distance measure between
each pair of images.

4.1 Calculating Distance Between Images
A preliminary search for image comparator methods re-

vealed that PerceptualDiff is widely regarded as one of the
best programs to use. It has a simple format, much like
the traditional UNIX diff command, and PerceptualDiff is
capable of taking two images as input and producing as
its output a numeric value indicating the number of pixels
by which image one differs from image two. A script was
written to process several thousand images across a 48 node
cluster. The initial sample included around 1,500 patients
and took roughly four days to compute the complete graph
of distance measures between each and every patient, with
a single comparison taking slightly less than 20 seconds.
There are obvious computational hurdles to overcome. The
PerceptualDiff algorithm does not yet support parallel pro-
cessing to take advantage of multiple cores.

While initially this seemed quite promising, several lim-
itations immediately presented themselves. It is often the
case that patients found within large observational data sets
will have very sparse records. That is, those patients may
have been observed only once or twice, and as a result, the
number of events recorded these types of patients may be
limited to ten or fewer medical conditions. When taking time
into account, it becomes apparent that there is a great deal
of “white space” which then appears in a patient’s image
file.

The distance between these types of patients will be
calculated to be very low (depending on the number of
conditions), and therefore even a close proximity measure
between the two will be effectively meaningless. And so
PerceptualDiff is misleading for a large number of data sets.

But even traditional analysis methods will have difficulty
with these kinds of patients, and while the distance metric
may not be very meaningful, it does segment these members
of the database quite effectively from the others. Therefore,
it does provide some use in that it does help us to navigate
large observational data sets.

Similarly, the converse is true. When a single patient
exhibits thousands of events and hundreds of drug prescrip-
tions, these individuals are also segmented from the rest of
the population. In effect, the image comparison algorithm
does help identify individuals who would be considered
outliers of the database.

5. Conclusion
The imaging framework described here offers a method-

ology through which longitudinal high-dimensional data can



be transcribed into an image-based representation to support
the application of image comparison algorithms yielding a
calculation of distance measures between individual obser-
vations found in large observational data sets.

Our methods show that the image generation process can
be achieved in linear time; however, the amount of time
required in calculating the edge weights for the complete
graph yielded from the image comparison algorithm grows
exponentially in relation to the total number of data set
members. Therefore, the impact of the image comparison
algorithm in terms of time complexity is the biggest hurdle
faced in employing this methodology.

The ultimate question is how meaningful the calculated
distance measure is and whether it can meaningfully be
applied to data of this type. Without taking into account
time shift, geographical proximity and more advanced prob-
abilistic image comparison metrics, the applicability of the
computed distance graph may be severely limited until
further improvements in this area are made.

Additionally, it is often the case that individual records
(patient, customer or other entity) may only contain a sparse
set of observations over a long period of time. Patient data in
electronic health records, insurance claims data and related
large scale patient records exhibit this property. We may
see a single patient out of several million possible patients
possessing a patient history that is rather extensive in time,
but only exhibits a few characteristic traits over the entire
lifespan of observed data points.

Due to the nature of patient data, when an attempt is
made to create a representative “image” based on the patient
record, we tend to see very sparse images. That is, typically,
the image generated contains a large proportion of white
space with relatively few pixels indicating an event that
actually happened at some point in time. This sparseness
creates a problem when we attempt to compare the images
using a traditional image comparison algorithm such as
PerceptualDiff.

Another limitation found with PerceptualDiff is that it
can only compare one picture to another in a very rigid
fashion. It looks for single pixel differentiation between
one picture and another without taking into account the
proximity of those pixels to one another, or a shift of the
image. Analogously, many text differencing programs, such
as UNIX diff, are ignorant of contextual information in much
the same manner. There may be reoccurring patterns which
fail to be discovered due to the inability of PerceptualDiff
to take into account time shift or relative proximity among
recorded observations.

Our future research will focus on improved image com-
parison algorithms and related research concerning how to
apply the graph of distance measures to data mining large
observational data sets. In addition, we hope to demonstrate
performance metrics of traditional statistical analysis meth-
ods in comparison with the image comparison methodology

described herein.
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