
CodeSlinger: An Interactive Biomedical
Ontology Browser

Jeffery L. Painter, Natalie L. Flowers

GlaxoSmithKline, Research Triangle Park, NC 27709, USA

Abstract. CodeSlinger is a highly interactive and semi-intelligent appli-
cation designed to support the search and navigation of large biomedical
coding schemes, thesauri, and ontologies. We discuss how CodeSlinger
is used by epidemiologist/physicians in the creation of coding sets for
data extraction and analysis, the exploratory nature of the application,
and finally, the issues facing our knowledge-representation model and
extension of the UMLS.

1 Introduction

There are several issues facing medical informatics today especially with regard
to the identification and classification of medical “concepts” in controlled vocab-
ularies, dictionaries, thesauri and ontologies [1].

Coping with the plethora of information available is a matter of utmost im-
portance for both the efficacy with which we are able to make use of medical
data, as well as insuring that the results we produce can be viewed with the
confidence that reported analysis are accurate and inclusive of the appropriate
populations. In response, we developed a multi-user client/server based appli-
cation called CodeSlinger to assist the informaticists with at least one dilemma
they face in the process of data extraction. CodeSlinger empowers the user to
promptly and accurately identify the appropriate set of medical codes relevant
to their studies. It also gives them a higher degree of confidence that they are
no longer “missing” data which might be relevant to their investigations.

2 Background

In almost every medical records database, one or more “coding schemes” are
employed to represent the medical concepts within it. The medical concepts can
include drugs, devices, symptoms, conditions, procedures etc. The broad scope
of a medical concept is just one of many difficulties when dealing with medical
informatics [2].

CodeSlinger helps the user to aggregate sets of codes for the purpose of data
extraction and analysis. Until now, the state of the art for this task involved (1)
using large medical coding books, (2) relying on one’s medical expertise from
use or experience with a particular coding scheme, (3) studying the literature to
see what sets of codes have been used in a study before and of course (4) using
Google and other search engines to locate medical codes.



2.1 Code Selection

Our goal was to provide an application where the user could simply focus on the
concepts of interest, and by making use of the highly interactive visual display
of codes and their relations, quickly and with confidence develop a set of codes
which properly characterizes a medical concept in the database(s) under review.

The databases the informaticists must deal with are also disparate with re-
gard to their format and content; and comparison and analysis of data across
such disparate sources requires some way of translating among the coding scheme
representations (or “normalizing” the references) so that references to the “same
disease”, “same condition”, “same procedure”, or “same drug” may be identi-
fied. For example, an epidemiologist may want to extract a cohort of patient data
for a study on “heart failure” from two databases that have been coded using
ICD-9 [3] in one and MedDRA [4] in the other. This leads to the question of how
does one then find the corresponding code maps between coding schemes which
would allow the researcher to ensure that the selected populations are compa-
rable? That is, the selected cohorts are representative of the same concept or
condition.

This challenge led to the development of CodeSlinger as a semi-automated
code mapping and navigation system. While there are other electronic resources
available for mapping codes from one scheme to another, including the UMLS
Knowledge Server [5] and TermWorks [6], we focused on developing an applica-
tion that would be highly interactive and provide visual queues to assist the user
in code selection while allowing for the exercise of the user’s medical expertise.

In our example (see Fig. 1), the user runs a search for “heart failure”, and a set
of results is returned in which they will find several codes under both ICD-9 and
MedDRA. Findings under ICD-9 include the code “428.1 - Left heart failure”.
The user may then reveal the possibly related codes by highlighting the code in
the user interface. One relation then displayed is the MedDRA code “10024119 -
Left ventricular failure”. CodeSlinger supports several concept mappings that we
have exploited from the UMLS system noted in a previous paper [7]. This allows
the user to more easily explore the inter-relations among source vocabularies.

3 Interface

As illustrated in Fig. 1, the interface of CodeSlinger is made up of a search box,
a results box, coding scheme browser(s), and a final list box (used to compile
the code sets that will be used to perform data extraction). The search box at
the top of Fig. 1 allows the user to select which coding schemes are of interest
for a particular search.

After the search results are displayed, the user can explore each entry by
clicking on the code or term to see its related concept maps in each of the sources
chosen at the beginning of the search. And, if any alternate codes are associated
with that particular code, those codes are made clear in the “Alternate Terms
or Codes” window pane.



Fig. 1. CodeSlinger Component Layout View

Additionally, a term can be double clicked and the application will open the
coding scheme browser (found on the right side of Fig. 1), displaying the code
in its hierarchical context, allowing for further visual search and navigation.

At any time, the user can click the check box next to a code to add or
remove it from their final list found at the bottom of Fig. 1. Once the code set
is collected, the user can export the list as a simple spreadsheet by clicking the
icon to save the codes to Excel.

4 Knowledge Representation

Much of the benefit our users experience with CodeSlinger is based on the fun-
damental knowledge representation created to facilitate the search, mapping
and exploration of the “concepts” extracted from the UMLS Metathesaurus [8].
Where in most applications based on the UMLS, developers strictly take an un-
modified database view of the UMLS content, we have created our own set of
tools to extract and manipulate relations directly from the RRF files. We also
construct our own custom database, which is comprised of a relatively minimal
number of tables used to store source hierarchies, terms and relations of the
concept model. The CodeSlinger server loads an object model of the hierarchical
structures along with active concept nodes which are self-aware of both their at-
tributes (atom identifiers, terms, alternate terms, etc) and relationships to other
concept nodes within the terminology server.

The hierarchical trees are indexed to enhance the lookup and retrieval time
based on key elements of the concept attributes, including source, term and



concept identifiers which are tied to the concept nodes in a cost conscious (in
terms of both memory and speed) manner. We preserve the atom, concept and
string identifiers found in the UMLS to enable quick retrieval of the information
requested by the search interface.

5 Constructing a Search

The search interface allows the user several options to refine and constrain the
search results. The user begins by choosing which vocabularies are of interest
for the search query. Currently ICD-9, ICD-10, Read (Clinical Terms Version 3),
Current Procedural Terminology (CPT), MedDRA, and a customized represen-
tation of the OXMIS coding scheme are supported. Next, the user has the option
to select whether the search is for a code or term. In some cases the may know
a particular code and want to see what other codes may have relevance. Finally,
the user may choose from one of two search algorithms or both: (1) a simple
contains search – indicating that the results must contain either the exact code
or search string entered, or (2) a fuzzy match.

5.1 Contains Search

Our contains search ignores word order and case distinctions. This allows us to
match “heart failure” to “Heart Failure”, “failure of the heart” and “failure,
heart” since each of the terms contains both the individual words “heart” and
“failure”. While this may return more than the number of items the user may
like to see, the stance we chose to take in many aspects of the application was
to “cast a wide net” and let the user employ medical expertise to evaluate and
discriminate the output.

5.2 Fuzzy Match

The fuzzy match generates a Bayesian model to approximate the probability of
a lexical match based on the user’s search string. The fuzzy match is capable
of dealing with misspellings and minor word variations. For example, the terms
“color” versus “colour” would be matched on either spelling using our fuzzy
match. The strings are first normalized in the following manner.

1. Tokenize and case fold the terms
2. Remove contractions and parenthetical plurals
3. Apply standard stemming algorithms
4. Remove stop words (customized for our domain)

The normalized string is converted to a sorted bi-gram sequence [9] and
stored in our database. When the user submits a new search, the fuzzy match
first normalizes the search string and converts it to a bi-gram sequence as well.
A probability value is then assigned between the search sequence and each of the
pre-computed sequences. If the probability of match is high enough, the source



term is matched to a set of possible “concepts” and the corresponding codes
are then included in the results. We can tune the output by changing the lower
bound required for a match, but this is not a user configurable option. Our best
user experience results when the lower bound is set within: p ∈ [0.55− 0.60].

6 Results

It should be noted that we are investigating several avenues of releasing the
CodeSlinger application to the medical informatics community. It is our goal
to make this application available to those who would most benefit from its
development.

A public demonstration of CodeSlinger was given to the UMLS user commu-
nity in 2008. The application was well received and many favorable comments
and feedback were given which will be incorporated in future versions of the
application. Also, after giving internal demonstrations, we identified a major
initiative where we were able to assist in improving the level of concept coverage
for a new internal medical conditions dictionary within GlaxoSmithKline.

7 Acknowledgements

The authors would like to thank Drs. Kathleen Beach, MD, MPH and Hoa Le,
MD for help in defining the requirements for CodeSlinger and providing valuable
feedback during its development.

References

1. Hasman, A: Challenges for medical informatics in the 21st century. International
Journal of Medical Informatics. 44 (1997) 1-7

2. Cimino, James J: Desiderata for Controlled Medical Vocabularies in the Twenty-
First Century. Methods Inf Med 1998; 37(4-5):394-403

3. ICD-9 refers to ICD-9, CM the International Classification of Diseases, 9th Revision,
Clinical Modification

4. MedDRA (Medical Dictionary for Regulatory Activities) is a registered trademark
of the International Federation of Pharmaceutical Manufacturers

5. UMLS Knowledge Source Server is a project of the (US) National Library of
Medicine, Department of Health and Human Services. Available at: http://umlsks.
nlm.nih.gov/

6. TermWorks is copyrighted by Apelon, Inc. Available at: http://www.apelon.com/
products/termworks.htm

7. Kleiner, Merrill and Painter. Inter-translation of Biomedical Coding Schemes Using
UMLS. Proceedings of the 2006 AAAI Fall Symposium on Semantic Technologies.

8. UMLS Metathesaurus is a project of the (US) National Library of Medicine, De-
partment of Health and Human Services. Available at: http://www.nlm.nih.org/
research/umls/

9. Adnan El-Nasan, Sriharsha Veeramachaneni, George Nagy: Word Discrimination
Based on Bigram Co-Occurrences, icdar, p. 0149, Sixth International Conference
on Document Analysis and Recognition (ICDAR’01), 2001


